Search (15 results, page 1 of 1)

  • × author_ss:"Chen, H."
  1. Chen, H.; Chung, Y.-M.; Ramsey, M.; Yang, C.C.: ¬A smart itsy bitsy spider for the Web (1998) 0.07
    0.06516782 = product of:
      0.08689043 = sum of:
        0.043081827 = weight(_text_:digital in 871) [ClassicSimilarity], result of:
          0.043081827 = score(doc=871,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 871, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=871)
        0.01914278 = weight(_text_:library in 871) [ClassicSimilarity], result of:
          0.01914278 = score(doc=871,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 871, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=871)
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 871) [ClassicSimilarity], result of:
              0.049331643 = score(doc=871,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 871, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=871)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    As part of the ongoing Illinois Digital Library Initiative project, this research proposes an intelligent agent approach to Web searching. In this experiment, we developed 2 Web personal spiders based on best first search and genetic algorithm techniques, respectively. These personal spiders can dynamically take a user's selected starting homepages and search for the most closely related homepages in the Web, based on the links and keyword indexing. A graphical, dynamic, Jav-based interface was developed and is available for Web access. A system architecture for implementing such an agent-spider is presented, followed by deteiled discussions of benchmark testing and user evaluation results. In benchmark testing, although the genetic algorithm spider did not outperform the best first search spider, we found both results to be comparable and complementary. In user evaluation, the genetic algorithm spider obtained significantly higher recall value than that of the best first search spider. However, their precision values were not statistically different. The mutation process introduced in genetic algorithms allows users to find other potential relevant homepages that cannot be explored via a conventional local search process. In addition, we found the Java-based interface to be a necessary component for design of a truly interactive and dynamic Web agent
  2. Suakkaphong, N.; Zhang, Z.; Chen, H.: Disease named entity recognition using semisupervised learning and conditional random fields (2011) 0.03
    0.033873826 = product of:
      0.06774765 = sum of:
        0.043081827 = weight(_text_:digital in 4367) [ClassicSimilarity], result of:
          0.043081827 = score(doc=4367,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 4367, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4367)
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 4367) [ClassicSimilarity], result of:
              0.049331643 = score(doc=4367,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 4367, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4367)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Information extraction is an important text-mining task that aims at extracting prespecified types of information from large text collections and making them available in structured representations such as databases. In the biomedical domain, information extraction can be applied to help biologists make the most use of their digital-literature archives. Currently, there are large amounts of biomedical literature that contain rich information about biomedical substances. Extracting such knowledge requires a good named entity recognition technique. In this article, we combine conditional random fields (CRFs), a state-of-the-art sequence-labeling algorithm, with two semisupervised learning techniques, bootstrapping and feature sampling, to recognize disease names from biomedical literature. Two data-processing strategies for each technique also were analyzed: one sequentially processing unlabeled data partitions and another one processing unlabeled data partitions in a round-robin fashion. The experimental results showed the advantage of semisupervised learning techniques given limited labeled training data. Specifically, CRFs with bootstrapping implemented in sequential fashion outperformed strictly supervised CRFs for disease name recognition. The project was supported by NIH/NLM Grant R33 LM07299-01, 2002-2005.
  3. Schatz, B.R.; Johnson, E.H.; Cochrane, P.A.; Chen, H.: Interactive term suggestion for users of digital libraries : using thesauri and co-occurrence lists for information retrieval (1996) 0.03
    0.030463453 = product of:
      0.12185381 = sum of:
        0.12185381 = weight(_text_:digital in 6417) [ClassicSimilarity], result of:
          0.12185381 = score(doc=6417,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.6163362 = fieldWeight in 6417, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.078125 = fieldNorm(doc=6417)
      0.25 = coord(1/4)
    
    Source
    Proceedings of the 1st ACM International Conference on Digital Libraries
  4. Chen, H.: Semantic research for digital libraries (1999) 0.02
    0.018278074 = product of:
      0.073112294 = sum of:
        0.073112294 = weight(_text_:digital in 1247) [ClassicSimilarity], result of:
          0.073112294 = score(doc=1247,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.36980176 = fieldWeight in 1247, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=1247)
      0.25 = coord(1/4)
    
    Abstract
    In this era of the Internet and distributed, multimedia computing, new and emerging classes of information systems applications have swept into the lives of office workers and people in general. From digital libraries, multimedia systems, geographic information systems, and collaborative computing to electronic commerce, virtual reality, and electronic video arts and games, these applications have created tremendous opportunities for information and computer science researchers and practitioners. As applications become more pervasive, pressing, and diverse, several well-known information retrieval (IR) problems have become even more urgent. Information overload, a result of the ease of information creation and transmission via the Internet and WWW, has become more troublesome (e.g., even stockbrokers and elementary school students, heavily exposed to various WWW search engines, are versed in such IR terminology as recall and precision). Significant variations in database formats and structures, the richness of information media (text, audio, and video), and an abundance of multilingual information content also have created severe information interoperability problems -- structural interoperability, media interoperability, and multilingual interoperability.
  5. Ramsey, M.C.; Chen, H.; Zhu, B.; Schatz, B.R.: ¬A collection of visual thesauri for browsing large collections of geographic images (1999) 0.02
    0.015078641 = product of:
      0.060314562 = sum of:
        0.060314562 = weight(_text_:digital in 3922) [ClassicSimilarity], result of:
          0.060314562 = score(doc=3922,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 3922, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3922)
      0.25 = coord(1/4)
    
    Abstract
    Digital libraries of geo-spatial multimedia content are currently deficient in providing fuzzy, concept-based retrieval mechanisms to users. The main challenge is that indexing and thesaurus creation are extremely labor-intensive processes for text documents and especially for images. Recently, 800.000 declassified staellite photographs were made available by the US Geological Survey. Additionally, millions of satellite and aerial photographs are archived in national and local map libraries. Such enormous collections make human indexing and thesaurus generation methods impossible to utilize. In this article we propose a scalable method to automatically generate visual thesauri of large collections of geo-spatial media using fuzzy, unsupervised machine-learning techniques
  6. Hu, P.J.-H.; Lin, C.; Chen, H.: User acceptance of intelligence and security informatics technology : a study of COPLINK (2005) 0.01
    0.012924549 = product of:
      0.051698197 = sum of:
        0.051698197 = weight(_text_:digital in 3233) [ClassicSimilarity], result of:
          0.051698197 = score(doc=3233,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.26148933 = fieldWeight in 3233, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=3233)
      0.25 = coord(1/4)
    
    Abstract
    The importance of Intelligence and Security Informatics (ISI) has significantly increased with the rapid and largescale migration of local/national security information from physical media to electronic platforms, including the Internet and information systems. Motivated by the significance of ISI in law enforcement (particularly in the digital government context) and the limited investigations of officers' technology-acceptance decisionmaking, we developed and empirically tested a factor model for explaining law-enforcement officers' technology acceptance. Specifically, our empirical examination targeted the COPLINK technology and involved more than 280 police officers. Overall, our model shows a good fit to the data collected and exhibits satisfactory Power for explaining law-enforcement officers' technology acceptance decisions. Our findings have several implications for research and technology management practices in law enforcement, which are also discussed.
  7. Chau, M.; Wong, C.H.; Zhou, Y.; Qin, J.; Chen, H.: Evaluating the use of search engine development tools in IT education (2010) 0.01
    0.008720686 = product of:
      0.034882743 = sum of:
        0.034882743 = product of:
          0.069765486 = sum of:
            0.069765486 = weight(_text_:project in 3325) [ClassicSimilarity], result of:
              0.069765486 = score(doc=3325,freq=4.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.32976416 = fieldWeight in 3325, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3325)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    It is important for education in computer science and information systems to keep up to date with the latest development in technology. With the rapid development of the Internet and the Web, many schools have included Internet-related technologies, such as Web search engines and e-commerce, as part of their curricula. Previous research has shown that it is effective to use search engine development tools to facilitate students' learning. However, the effectiveness of these tools in the classroom has not been evaluated. In this article, we review the design of three search engine development tools, SpidersRUs, Greenstone, and Alkaline, followed by an evaluation study that compared the three tools in the classroom. In the study, 33 students were divided into 13 groups and each group used the three tools to develop three independent search engines in a class project. Our evaluation results showed that SpidersRUs performed better than the two other tools in overall satisfaction and the level of knowledge gained in their learning experience when using the tools for a class project on Internet applications development.
  8. Zhu, B.; Chen, H.: Information visualization (2004) 0.01
    0.0075393203 = product of:
      0.030157281 = sum of:
        0.030157281 = weight(_text_:digital in 4276) [ClassicSimilarity], result of:
          0.030157281 = score(doc=4276,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.15253544 = fieldWeight in 4276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
      0.25 = coord(1/4)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
  9. Chen, H.; Baptista Nunes, J.M.; Ragsdell, G.; An, X.: Somatic and cultural knowledge : drivers of a habitus-driven model of tacit knowledge acquisition (2019) 0.01
    0.0075393203 = product of:
      0.030157281 = sum of:
        0.030157281 = weight(_text_:digital in 5460) [ClassicSimilarity], result of:
          0.030157281 = score(doc=5460,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.15253544 = fieldWeight in 5460, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5460)
      0.25 = coord(1/4)
    
    Abstract
    Findings The findings of this research suggest that individual learning and development are deemed to be the fundamental feature for professional success and survival in the continuously changing environment of the SW industry today. However, individual learning was described by the participants as much more than a mere individual process. It involves a collective and participatory effort within the organization and the sector as a whole, and a KS process that transcends organizational, cultural and national borders. Individuals in particular are mostly motivated by the pressing need to face and adapt to the dynamic and changeable environments of today's digital society that is led by the sector. Software practitioners are continuously in need of learning, refreshing and accumulating tacit knowledge, partly because it is required by their companies, but also due to a sound awareness of continuous technical and technological changes that seem only to increase with the advances of information technology. This led to a clear theoretical understanding that the continuous change that faces the sector has led to individual acquisition of culture and somatic knowledge that in turn lay the foundation for not only the awareness of the need for continuous individual professional development but also for the creation of habitus related to KS and continuous learning. Originality/value The study reported in this paper shows that there is a theoretical link between the existence of conducive organizational and sector-wide somatic and cultural knowledge, and the success of KS practices that lead to individual learning and development. Therefore, the theory proposed suggests that somatic and cultural knowledge are crucial drivers for the creation of habitus of individual tacit knowledge acquisition. The paper further proposes a habitus-driven individual development (HDID) Theoretical Model that can be of use to both academics and practitioners interested in fostering and developing processes of KS and individual development in knowledge-intensive organizations.
  10. Chung, W.; Chen, H.: Browsing the underdeveloped Web : an experiment on the Arabic Medical Web Directory (2009) 0.01
    0.005093075 = product of:
      0.0203723 = sum of:
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 2733) [ClassicSimilarity], result of:
              0.0407446 = score(doc=2733,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 2733, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2733)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2009 17:57:50
  11. Chen, H.; Yim, T.; Fye, D.: Automatic thesaurus generation for an electronic community system (1995) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 2918) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2918,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2918, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2918)
      0.25 = coord(1/4)
    
    Abstract
    Reports an algorithmic approach to the automatic generation of thesauri for electronic community systems. The techniques used included terms filtering, automatic indexing, and cluster analysis. The testbed for the research was the Worm Community System, which contains a comprehensive library of specialized community data and literature, currently in use by molecular biologists who study the nematode worm. The resulting worm thesaurus included 2709 researchers' names, 798 gene names, 20 experimental methods, and 4302 subject descriptors. On average, each term had about 90 weighted neighbouring terms indicating relevant concepts. The thesaurus was developed as an online search aide. Tests the worm thesaurus in an experiment with 6 worm researchers of varying degrees of expertise and background. The experiment showed that the thesaurus was an excellent 'memory jogging' device and that it supported learning and serendipitous browsing. Despite some occurrences of obvious noise, the system was useful in suggesting relevant concepts for the researchers' queries and it helped improve concept recall. With a simple browsing interface, an automatic thesaurus can become a useful tool for online search and can assist researchers in exploring and traversing a dynamic and complex electronic community system
  12. Carmel, E.; Crawford, S.; Chen, H.: Browsing in hypertext : a cognitive study (1992) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 7469) [ClassicSimilarity], result of:
              0.033953834 = score(doc=7469,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 7469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=7469)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    IEEE transactions on systems, man and cybernetics. 22(1992) no.5, S.865-884
  13. Leroy, G.; Chen, H.: Genescene: an ontology-enhanced integration of linguistic and co-occurrence based relations in biomedical texts (2005) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 5259) [ClassicSimilarity], result of:
              0.033953834 = score(doc=5259,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 5259, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5259)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 14:26:01
  14. Zheng, R.; Li, J.; Chen, H.; Huang, Z.: ¬A framework for authorship identification of online messages : writing-style features and classification techniques (2006) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 5276) [ClassicSimilarity], result of:
              0.033953834 = score(doc=5276,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 5276, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5276)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 16:14:37
  15. Hu, D.; Kaza, S.; Chen, H.: Identifying significant facilitators of dark network evolution (2009) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 2753) [ClassicSimilarity], result of:
              0.033953834 = score(doc=2753,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 2753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2753)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2009 18:50:30