Search (20 results, page 1 of 1)

  • × author_ss:"Gnoli, C."
  1. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.07
    0.06534804 = product of:
      0.08713072 = sum of:
        0.043081827 = weight(_text_:digital in 3698) [ClassicSimilarity], result of:
          0.043081827 = score(doc=3698,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 3698, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3698)
        0.027071979 = weight(_text_:library in 3698) [ClassicSimilarity], result of:
          0.027071979 = score(doc=3698,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.2054202 = fieldWeight in 3698, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3698)
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
              0.033953834 = score(doc=3698,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 3698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3698)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Although bibliographic classifications usually adopt a perspective different from that of object classifications, the two have obvious relationships. These become especially relevant when users are looking for knowledge scattered in a wide variety of forms and media. This is an increasingly common situation, as library catalogues now coexist in the global digital environment with catalogues of archives, of museums, of commercial products, and many other information resources. In order to make the subject content of all these resources searchable, a broader conception of classification is needed, that can be applied to an knowledge item, rather than only bibliographic materials. To illustrate this we take an example of the research on bagpipes in Northern Italian folklore. For this kind of research, the most effective search strategy is a cross-media one, looking for many different knowledge sources such as published documents, police archives, painting details, museum specimens, organizations devoted to related subjects. To provide satisfying results for this kind of search, the traditional disciplinary approach to classification is not sufficient. Tools are needed in which knowledge items dealing with a phenomenon of interest can be retrieved independently from the other topics with which it is combined, the disciplinary context, and the medium where it occurs. This can be made possible if the basic units of classification are taken to be the phenomena treated, as recommended in the León Manifesto, rather than disciplines or other aspect features. The concept of bagpipes should be retrievable and browsable in any combination with other phenomena, disciplines, media etc. Examples are given of information sources that could be managed by this freely-faceted technique of classification.
    Date
    22. 7.2010 20:40:08
  2. Szostak, R.; Gnoli, C.; López-Huertas, M.: Interdisciplinary knowledge organization 0.04
    0.035199553 = product of:
      0.070399106 = sum of:
        0.048741527 = weight(_text_:digital in 3804) [ClassicSimilarity], result of:
          0.048741527 = score(doc=3804,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.2465345 = fieldWeight in 3804, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.03125 = fieldNorm(doc=3804)
        0.021657582 = weight(_text_:library in 3804) [ClassicSimilarity], result of:
          0.021657582 = score(doc=3804,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.16433616 = fieldWeight in 3804, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=3804)
      0.5 = coord(2/4)
    
    Abstract
    This book proposes a novel approach to classification, discusses its myriad advantages, and outlines how such an approach to classification can best be pursued. It encourages a collaborative effort toward the detailed development of such a classification. This book is motivated by the increased importance of interdisciplinary scholarship in the academy, and the widely perceived shortcomings of existing knowledge organization schemes in serving interdisciplinary scholarship. It is designed for scholars of classification research, knowledge organization, the digital environment, and interdisciplinarity itself. The approach recommended blends a general classification with domain-specific classification practices. The book reaches a set of very strong conclusions:
    -Existing classification systems serve interdisciplinary research and teaching poorly. -A novel approach to classification, grounded in the phenomena studied rather than disciplines, would serve interdisciplinary scholarship much better. It would also have advantages for disciplinary scholarship. The productivity of scholarship would thus be increased. -This novel approach is entirely feasible. Various concerns that might be raised can each be addressed. The broad outlines of what a new classification would look like are developed. -This new approach might serve as a complement to or a substitute for existing classification systems. -Domain analysis can and should be employed in the pursuit of a general classification. This will be particularly important with respect to interdisciplinary domains. -Though the impetus for this novel approach comes from interdisciplinarity, it is also better suited to the needs of the Semantic Web, and a digital environment more generally. Though the primary focus of the book is on classification systems, most chapters also address how the analysis could be extended to thesauri and ontologies. The possibility of a universal thesaurus is explored. The classification proposed has many of the advantages sought in ontologies for the Semantic Web. The book is therefore of interest to scholars working in these areas as well.
    LCSH
    Library science
    Subject
    Library science
  3. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.03
    0.026429337 = product of:
      0.052858673 = sum of:
        0.032486375 = weight(_text_:library in 4144) [ClassicSimilarity], result of:
          0.032486375 = score(doc=4144,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.24650425 = fieldWeight in 4144, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=4144)
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.0407446 = score(doc=4144,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Exploring collections by their subject matter is an important functionality for library users. We developed an online tool called SciGator in order to allow users to browse the Dewey Decimal Classification (DDC) classes used in different libraries at the University of Pavia and to perform different types of search in the OPAC. Besides navigation of DDC hierarchies, SciGator suggests "see-also" relationships with related classes and maps equivalent classes in local shelving schemes, thus allowing the expansion of search queries to include subjects contiguous to the initial one. We are developing new features, including the possibility to expand searches even more to national and international catalogues.
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
  4. Gnoli, C.; Ledl, A.; Park, Z.; Trzmielewski, M.: Phenomenon-based vs. disciplinary classification : possibilities for evaluating and for mapping (2018) 0.02
    0.024370763 = product of:
      0.097483054 = sum of:
        0.097483054 = weight(_text_:digital in 4804) [ClassicSimilarity], result of:
          0.097483054 = score(doc=4804,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.493069 = fieldWeight in 4804, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0625 = fieldNorm(doc=4804)
      0.25 = coord(1/4)
    
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
  5. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.02
    0.02082137 = product of:
      0.08328548 = sum of:
        0.08328548 = sum of:
          0.049331643 = weight(_text_:project in 3739) [ClassicSimilarity], result of:
            0.049331643 = score(doc=3739,freq=2.0), product of:
              0.21156175 = queryWeight, product of:
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.050121464 = queryNorm
              0.23317845 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
          0.033953834 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
            0.033953834 = score(doc=3739,freq=2.0), product of:
              0.17551683 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050121464 = queryNorm
              0.19345059 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
      0.25 = coord(1/4)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  6. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.01
    0.012924549 = product of:
      0.051698197 = sum of:
        0.051698197 = weight(_text_:digital in 2663) [ClassicSimilarity], result of:
          0.051698197 = score(doc=2663,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.26148933 = fieldWeight in 2663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
      0.25 = coord(1/4)
    
    Abstract
    Several authors remark that categories used in languages, including indexing ones, are affected by cultural biases, and do not reflect reality in an objective way. Hence knowledge organization would essentially be determined by pragmatic factors. However, human categories are connected with the structure of reality through biological bonds, and this allows for a naturalistic approach too. Naturalism has been adopted by Farradane in proposing relational categories, and by Dahlberg and the CRG in applying the theory of integrative levels to general classification schemes. The latter is especially relevant for possible developments in making the structure of schemes independent from disciplines, and in applying it to digital information retrieval.
  7. Gnoli, C.; Pusterla, L.; Bendiscioli, A.; Recinella, C.: Classification for collections mapping and query expansion (2016) 0.01
    0.012924549 = product of:
      0.051698197 = sum of:
        0.051698197 = weight(_text_:digital in 3102) [ClassicSimilarity], result of:
          0.051698197 = score(doc=3102,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.26148933 = fieldWeight in 3102, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=3102)
      0.25 = coord(1/4)
    
    Source
    Proceedings of the 15th European Networked Knowledge Organization Systems Workshop (NKOS 2016) co-located with the 20th International Conference on Theory and Practice of Digital Libraries 2016 (TPDL 2016), Hannover, Germany, September 9, 2016. Edi. by Philipp Mayr et al. [http://ceur-ws.org/Vol-1676/=urn:nbn:de:0074-1676-5]
  8. Gnoli, C.: Notation (2018) 0.01
    0.012924549 = product of:
      0.051698197 = sum of:
        0.051698197 = weight(_text_:digital in 4650) [ClassicSimilarity], result of:
          0.051698197 = score(doc=4650,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.26148933 = fieldWeight in 4650, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=4650)
      0.25 = coord(1/4)
    
    Abstract
    Notations are systems of symbols that can be combined according to syntactical rules to represent meanings in a specialized domain. In knowledge organization, they are systems of numerals, letters and punctuation marks associated to a concept that mechanically produce helpful sequences of them for arranging books on shelves, browsing subjects in directories and displaying items in catalogues. Most bibliographic classification systems, like Dewey Decimal Classification, use a positional notation allowing for expression of increasingly specific subjects by additional digits. However, some notations like that of Bliss Bibliographic Classification are purely ordinal and do not reflect the hierarchical degree of a subject. Notations can also be expressive of the syntactical structure of compound subjects (common auxiliaries, facets etc.) in various ways. In the digital media, notation can be recorded and managed in databases and exploited to provide appropriate search and display functionalities.
  9. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.01
    0.008720686 = product of:
      0.034882743 = sum of:
        0.034882743 = product of:
          0.069765486 = sum of:
            0.069765486 = weight(_text_:project in 2527) [ClassicSimilarity], result of:
              0.069765486 = score(doc=2527,freq=4.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.32976416 = fieldWeight in 2527, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2527)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The evolution of bibliographic classification schemes, from the end of the 19th century to our time, shows a trend of increasing possibilities to combine concepts in a classmark. While the early schemes, like DDC and LCC, were largely enumerative, more and more synthetic devices have appeared with common auxiliaries, facets, and phase relationships. The last editions of UDC and the UDC-derived FATKS project follow this evolution, by introducing more specific phase relationships and more common auxiliaries, like those for general properties and processes. This agrees with the Farradane's principle that each concept should have a place of unique definition, instead of being re-notated in each context where it occurs. This evolution appears to be unfinished, as even in most synthetic schemes many concepts have a different notation according to the disciplinary main classes where they occur. To overcome this limitation, main classes should be defined in terms of phenomena rather than disciplines: the Integrative Level Classification (ILC) research project is currently exploring this possibility. Examples with UDC, FATKS, and ILC notations are discussed.
  10. Gnoli, C.: Facets: a fruitful notion in many domains (2008) 0.01
    0.0076571116 = product of:
      0.030628446 = sum of:
        0.030628446 = weight(_text_:library in 49) [ClassicSimilarity], result of:
          0.030628446 = score(doc=49,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.23240642 = fieldWeight in 49, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0625 = fieldNorm(doc=49)
      0.25 = coord(1/4)
    
    Abstract
    This special issue of ''Axiomathes'' is devoted to a technique originally developed within library science: facet analysis. During discussions with Roberto Poli, it was realized that facet analysis shares interesting features with analytical methods in several other fields, including philosophy, psychology, linguistics, and computer science. For these reasons, in an interdisciplinary spirit, we believe that facet analysis is a relevant topic for the scope of this journal. It is hoped that readers will be persuaded by this after examining the present contributions.
  11. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.01
    0.0073997467 = product of:
      0.029598987 = sum of:
        0.029598987 = product of:
          0.059197973 = sum of:
            0.059197973 = weight(_text_:project in 534) [ClassicSimilarity], result of:
              0.059197973 = score(doc=534,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.27981415 = fieldWeight in 534, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.046875 = fieldNorm(doc=534)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
  12. Gnoli, C.: Categories and facets in integrative levels (2008) 0.01
    0.0073997467 = product of:
      0.029598987 = sum of:
        0.029598987 = product of:
          0.059197973 = sum of:
            0.059197973 = weight(_text_:project in 1806) [ClassicSimilarity], result of:
              0.059197973 = score(doc=1806,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.27981415 = fieldWeight in 1806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1806)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  13. Gnoli, C.: ISKO News (2007) 0.01
    0.0061664553 = product of:
      0.024665821 = sum of:
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 1092) [ClassicSimilarity], result of:
              0.049331643 = score(doc=1092,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 1092, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1092)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Darin: "However, John Sowa (Vivomind, USA) argued in his speech that the formalized approach, already undertaken by the pioneering project Cyc now having run for 23 years, is not the best way to analyze complex systems. People don't really use axioms in their cognitive processes (even mathematicians first get an idea intuitively, then work on axioms and proofs only at the moment of writing papers). To map between different ontologies, the Vivomind Analogy Engine throws axioms out, and searches instead for analogies in their structures. Analogy is a pragmatic human faculty using a combination of the three logical procedures of deduction, induction, and abduction. Guarino comments that people can communicate without need of axioms as they share a common context, but in order to teach computers how to operate, the requirements are different: he would not trust an airport control system working by analogy."
  14. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.01
    0.0061664553 = product of:
      0.024665821 = sum of:
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 2291) [ClassicSimilarity], result of:
              0.049331643 = score(doc=2291,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 2291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2291)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
  15. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.01
    0.0061664553 = product of:
      0.024665821 = sum of:
        0.024665821 = product of:
          0.049331643 = sum of:
            0.049331643 = weight(_text_:project in 4825) [ClassicSimilarity], result of:
              0.049331643 = score(doc=4825,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23317845 = fieldWeight in 4825, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4825)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.
  16. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.01
    0.005093075 = product of:
      0.0203723 = sum of:
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
              0.0407446 = score(doc=1414,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 1414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1414)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  17. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.01
    0.005093075 = product of:
      0.0203723 = sum of:
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.0407446 = score(doc=4152,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    17. 2.2018 18:22:25
  18. Gnoli, C.: Classifying phenomena : Part 1: dimensions (2016) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 3417) [ClassicSimilarity], result of:
          0.01914278 = score(doc=3417,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 3417, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3417)
      0.25 = coord(1/4)
    
    Abstract
    This is the first part of a study on the classification of phenomena. It starts by addressing the status of classification schemes among knowledge organization systems (KOSs), as some features of them have been overlooked in recent reviews of KOS types. It then considers the different dimensions implied in a KOS, which include: the observed phenomena, the cultural and disciplinary perspective under which they are treated, the features of documents carrying such treatment, the collections of such documents as managed in libraries, archives or museums, the information needs prompting to search and use these collections and the people experiencing such different information needs. Until now, most library classification schemes have given priority to the perspective dimension as they first list disciplines. However, an increasing number of voices are now considering the possibility of classification schemes giving priority to phenomena as advocated in the León Manifesto. Although these schemes first list phenomena as their main classes, they can as well express perspective or the other relevant dimensions that occur in a classified item. The independence of a phenomenon-based classification from the institutional divisions into disciplines contributes to giving knowledge organization a more proactive and influential role.
  19. Gnoli, C.: Knowledge organization in Italy (2004) 0.00
    0.004316519 = product of:
      0.017266076 = sum of:
        0.017266076 = product of:
          0.034532152 = sum of:
            0.034532152 = weight(_text_:project in 3750) [ClassicSimilarity], result of:
              0.034532152 = score(doc=3750,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.16322492 = fieldWeight in 3750, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3750)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Content
    "Subject headings Many Italian libraries create subject headings for their catalogues, using as a reference guide the "Soggettario per i catalogui delle biblioteche italiane." This is basically a list of subject terms created by the Biblioteca nazionale centrale di Firenze (BNCF), first published in 1956 and later updated with various lists of new subject headings. Though the Soggettario is still the main available reference, librarians are generally aware that it is outdated in both vocabulary and structure, especially as it does not provide explicit principles and rules to create and combine subject headings. A research group, called the Gruppo di ricerca sull'indicizzazione per soggetto (GRIS), was founded in 1990. It was devoted to improving the principles and consistency of subject indexing. Its members have performed in depth investigations of the structure of subject headings, starting with the principles of facet analysis used in PRECIS and including original developments. Results of their work are coded into the Guida all'indicizzazione per soggetto, published in 1996 and available also online <http:// wwwaib.it/aib/commiss/gris/gulda.htm>. The GRIS guide does not concern vocabulary, but morphological and syntactical rules for choosing and combining terms according to a sound citation order, based an a "role scheme." Unfortunately, GRIS principles have been applied only in a small number of libraries, mainly in Tuscany, rohere most GRIS members are located. A new project is now attempting to blend the traditional authority of the Soggettario with the more advanced principles of GRIS. A working group has been formed with people from BNCF, GRIS, and others, to study the feasibility of a renewal of the Soggettario. The group produced a report book in 2002, specifying the desirable features of the new system, and is at present searching for grants to implement it.
  20. Gnoli, C.: Mentefacts as a missing level in theory of information science (2018) 0.00
    0.0038285558 = product of:
      0.015314223 = sum of:
        0.015314223 = weight(_text_:library in 4624) [ClassicSimilarity], result of:
          0.015314223 = score(doc=4624,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.11620321 = fieldWeight in 4624, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=4624)
      0.25 = coord(1/4)
    
    Abstract
    Purpose The current debate between two theoretical approaches in library and information science and knowledge organization (KO), the cognitive one and the sociological one, is addressed in view of their possible integration in a more general model. The paper aims to discuss these issues. Design/methodology/approach Personal knowledge of individual users, as focused in the cognitive approach, and social production and use of knowledge, as focused in the sociological approach, are reconnected to the theory of levels of reality, particularly in the versions of Nicolai Hartmann and Karl R. Popper (three worlds). The notions of artefact and mentefact, as proposed in anthropological literature and applied in some KO systems, are also examined as further contributions to the generalized framework. Some criticisms to these models are reviewed and discussed. Findings Both the cognitive approach and the sociological approach, if taken in isolation, prove to be cases of philosophical monism as they emphasize a single level over the others. On the other hand, each of them can be considered as a component of a pluralist ontology and epistemology, where individual minds and social communities are but two successive levels in knowledge production and use, and are followed by a further level of "objectivated spirit"; this can in turn be analyzed into artefacts and mentefacts. While all these levels are relevant to information science, mentefacts and their properties are its most peculiar objects of study, which make it distinct from such other disciplines as psychology and sociology. Originality/value This analysis shows how existing approaches can benefit from additional notions contributed by levels theory, to develop more complete and accurate models of information and knowledge phenomena.