Search (8 results, page 1 of 1)

  • × author_ss:"Kousha, K."
  • × author_ss:"Thelwall, M."
  1. Kousha, K.; Thelwall, M.; Rezaie, S.: Can the impact of scholarly images be assessed online? : an exploratory study using image identification technology (2010) 0.01
    0.010770457 = product of:
      0.043081827 = sum of:
        0.043081827 = weight(_text_:digital in 3966) [ClassicSimilarity], result of:
          0.043081827 = score(doc=3966,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 3966, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3966)
      0.25 = coord(1/4)
    
    Abstract
    The web contains a huge number of digital pictures. For scholars publishing such images it is important to know how well used their images are, but no method seems to have been developed for monitoring the value of academic images. In particular, can the impact of scientific or artistic images be assessed through identifying images copied or reused on the Internet? This article explores a case study of 260 NASA images to investigate whether the TinEye search engine could theoretically help to provide this information. The results show that the selected pictures had a median of 11 online copies each. However, a classification of 210 of these copies reveals that only 1.4% were explicitly used in academic publications, reflecting research impact, and the majority of the NASA pictures were used for informal scholarly (or educational) communication (37%). Additional analyses of world famous paintings and scientific images about pathology and molecular structures suggest that image contents are important for the type and extent of image use. Although it is reasonable to use statistics derived from TinEye for assessing image reuse value, the extent of its image indexing is not known.
  2. Kousha, K.; Thelwall, M.: Assessing the impact of disciplinary research on teaching : an automatic analysis of online syllabuses (2008) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 2383) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2383,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2383, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2383)
      0.25 = coord(1/4)
    
    Abstract
    The impact of published academic research in the sciences and social sciences, when measured, is commonly estimated by counting citations from journal articles. The Web has now introduced new potential sources of quantitative data online that could be used to measure aspects of research impact. In this article we assess the extent to which citations from online syllabuses could be a valuable source of evidence about the educational utility of research. An analysis of online syllabus citations to 70,700 articles published in 2003 in the journals of 12 subjects indicates that online syllabus citations were sufficiently numerous to be a useful impact indictor in some social sciences, including political science and information and library science, but not in others, nor in any sciences. This result was consistent with current social science research having, in general, more educational value than current science research. Moreover, articles frequently cited in online syllabuses were not necessarily highly cited by other articles. Hence it seems that online syllabus citations provide a valuable additional source of evidence about the impact of journals, scholars, and research articles in some social sciences.
  3. Kousha, K.; Thelwall, M.: Google book search : citation analysis for social science and the humanities (2009) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 2946) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2946,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2946, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2946)
      0.25 = coord(1/4)
    
    Abstract
    In both the social sciences and the humanities, books and monographs play significant roles in research communication. The absence of citations from most books and monographs from the Thomson Reuters/Institute for Scientific Information databases (ISI) has been criticized, but attempts to include citations from or to books in the research evaluation of the social sciences and humanities have not led to widespread adoption. This article assesses whether Google Book Search (GBS) can partially fill this gap by comparing citations from books with citations from journal articles to journal articles in 10 science, social science, and humanities disciplines. Book citations were 31% to 212% of ISI citations and, hence, numerous enough to supplement ISI citations in the social sciences and humanities covered, but not in the sciences (3%-5%), except for computing (46%), due to numerous published conference proceedings. A case study was also made of all 1,923 articles in the 51 information science and library science ISI-indexed journals published in 2003. Within this set, highly book-cited articles tended to receive many ISI citations, indicating a significant relationship between the two types of citation data, but with important exceptions that point to the additional information provided by book citations. In summary, GBS is clearly a valuable new source of citation data for the social sciences and humanities. One practical implication is that book-oriented scholars should consult it for additional citations to their work when applying for promotion and tenure.
  4. Mohammadi, E.; Thelwall, M.; Kousha, K.: Can Mendeley bookmarks reflect readership? : a survey of user motivations (2016) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 2897) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2897,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2897, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2897)
      0.25 = coord(1/4)
    
    Abstract
    Although Mendeley bookmarking counts appear to correlate moderately with conventional citation metrics, it is not known whether academic publications are bookmarked in Mendeley in order to be read or not. Without this information, it is not possible to give a confident interpretation of altmetrics derived from Mendeley. In response, a survey of 860 Mendeley users shows that it is reasonable to use Mendeley bookmarking counts as an indication of readership because most (55%) users with a Mendeley library had read or intended to read at least half of their bookmarked publications. This was true across all broad areas of scholarship except for the arts and humanities (42%). About 85% of the respondents also declared that they bookmarked articles in Mendeley to cite them in their publications, but some also bookmark articles for use in professional (50%), teaching (25%), and educational activities (13%). Of course, it is likely that most readers do not record articles in Mendeley and so these data do not represent all readers. In conclusion, Mendeley bookmark counts seem to be indicators of readership leading to a combination of scholarly impact and wider professional impact.
  5. Thelwall, M.; Kousha, K.: SlideShare presentations, citations, users, and trends : a professional site with academic and educational uses (2017) 0.00
    0.004785695 = product of:
      0.01914278 = sum of:
        0.01914278 = weight(_text_:library in 3766) [ClassicSimilarity], result of:
          0.01914278 = score(doc=3766,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 3766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3766)
      0.25 = coord(1/4)
    
    Abstract
    SlideShare is a free social website that aims to help users distribute and find presentations. Owned by LinkedIn since 2012, it targets a professional audience but may give value to scholarship through creating a long-term record of the content of talks. This article tests this hypothesis by analyzing sets of general and scholarly related SlideShare documents using content and citation analysis and popularity statistics reported on the site. The results suggest that academics, students, and teachers are a minority of SlideShare uploaders, especially since 2010, with most documents not being directly related to scholarship or teaching. About two thirds of uploaded SlideShare documents are presentation slides, with the remainder often being files associated with presentations or video recordings of talks. SlideShare is therefore a presentation-centered site with a predominantly professional user base. Although a minority of the uploaded SlideShare documents are cited by, or cite, academic publications, probably too few articles are cited by SlideShare to consider extracting SlideShare citations for research evaluation. Nevertheless, scholars should consider SlideShare to be a potential source of academic and nonacademic information, particularly in library and information science, education, and business.
  6. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
              0.033953834 = score(doc=586,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
  7. Li, X.; Thelwall, M.; Kousha, K.: ¬The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication (2015) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 2593) [ClassicSimilarity], result of:
              0.033953834 = score(doc=2593,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 2593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2593)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 1.2015 18:30:22
  8. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Why are coauthored academic articles more cited : higher quality or larger audience? (2023) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 995) [ClassicSimilarity], result of:
              0.033953834 = score(doc=995,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=995)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 6.2023 18:11:50