Search (5 results, page 1 of 1)

  • × classification_ss:"ST 300"
  1. Handbook of metadata, semantics and ontologies (2014) 0.02
    0.024889842 = product of:
      0.049779683 = sum of:
        0.034465462 = weight(_text_:digital in 5134) [ClassicSimilarity], result of:
          0.034465462 = score(doc=5134,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.17432621 = fieldWeight in 5134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
        0.015314223 = weight(_text_:library in 5134) [ClassicSimilarity], result of:
          0.015314223 = score(doc=5134,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.11620321 = fieldWeight in 5134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
      0.5 = coord(2/4)
    
    Abstract
    Metadata research has emerged as a discipline cross-cutting many domains, focused on the provision of distributed descriptions (often called annotations) to Web resources or applications. Such associated descriptions are supposed to serve as a foundation for advanced services in many application areas, including search and location, personalization, federation of repositories and automated delivery of information. Indeed, the Semantic Web is in itself a concrete technological framework for ontology-based metadata. For example, Web-based social networking requires metadata describing people and their interrelations, and large databases with biological information use complex and detailed metadata schemas for more precise and informed search strategies. There is a wide diversity in the languages and idioms used for providing meta-descriptions, from simple structured text in metadata schemas to formal annotations using ontologies, and the technologies for storing, sharing and exploiting meta-descriptions are also diverse and evolve rapidly. In addition, there is a proliferation of schemas and standards related to metadata, resulting in a complex and moving technological landscape - hence, the need for specialized knowledge and skills in this area. The Handbook of Metadata, Semantics and Ontologies is intended as an authoritative reference for students, practitioners and researchers, serving as a roadmap for the variety of metadata schemas and ontologies available in a number of key domain areas, including culture, biology, education, healthcare, engineering and library science.
    Signature
    Digital
  2. Lenzen, M.: Künstliche Intelligenz : was sie kann & was uns erwartet (2018) 0.00
    0.0042442293 = product of:
      0.016976917 = sum of:
        0.016976917 = product of:
          0.033953834 = sum of:
            0.033953834 = weight(_text_:22 in 4295) [ClassicSimilarity], result of:
              0.033953834 = score(doc=4295,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.19345059 = fieldWeight in 4295, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4295)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    18. 6.2018 19:22:02
  3. Euzenat, J.; Shvaiko, P.: Ontology matching (2010) 0.00
    0.0033953832 = product of:
      0.013581533 = sum of:
        0.013581533 = product of:
          0.027163066 = sum of:
            0.027163066 = weight(_text_:22 in 168) [ClassicSimilarity], result of:
              0.027163066 = score(doc=168,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.15476047 = fieldWeight in 168, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=168)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    20. 6.2012 19:08:22
  4. Stuart, D.: Practical ontologies for information professionals (2016) 0.00
    0.0033499864 = product of:
      0.013399946 = sum of:
        0.013399946 = weight(_text_:library in 5152) [ClassicSimilarity], result of:
          0.013399946 = score(doc=5152,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.10167781 = fieldWeight in 5152, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5152)
      0.25 = coord(1/4)
    
    Content
    C H A P T E R 1 What is an ontology?; Introduction; The data deluge and information overload; Defining terms; Knowledge organization systems and ontologies; Ontologies, metadata and linked data; What can an ontology do?; Ontologies and information professionals; Alternatives to ontologies; The aims of this book; The structure of this book; C H A P T E R 2 Ontologies and the semantic web; Introduction; The semantic web and linked data; Resource Description Framework (RDF); Classes, subclasses and properties; The semantic web stack; Embedded RDF; Alternative semantic visionsLibraries and the semantic web; Other cultural heritage institutions and the semantic web; Other organizations and the semantic web; Conclusion; C H A P T E R 3 Existing ontologies; Introduction; Ontology documentation; Ontologies for representing ontologies; Ontologies for libraries; Upper ontologies; Cultural heritage data models; Ontologies for the web; Conclusion; C H A P T E R 4 Adopting ontologies; Introduction; Reusing ontologies: application profiles and data models; Identifying ontologies; The ideal ontology discovery tool; Selection criteria; Conclusion C H A P T E R 5 Building ontologiesIntroduction; Approaches to building an ontology; The twelve steps; Ontology development example: Bibliometric Metrics Ontology element set; Conclusion; C H A P T E R 6 Interrogating ontologies; Introduction; Interrogating ontologies for reuse; Interrogating a knowledge base; Understanding ontology use; Conclusion; C H A P T E R 7 The future of ontologies and the information professional; Introduction; The future of ontologies for knowledge discovery; The future role of library and information professionals; The practical development of ontologies
  5. New directions in cognitive information retrieval (2005) 0.00
    0.0023928476 = product of:
      0.00957139 = sum of:
        0.00957139 = weight(_text_:library in 338) [ClassicSimilarity], result of:
          0.00957139 = score(doc=338,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.07262701 = fieldWeight in 338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.01953125 = fieldNorm(doc=338)
      0.25 = coord(1/4)
    
    Footnote
    Weitere Rez. in: JASIST 58(2007) no.5, S.758-760 (A. Gruzd): "Despite the minor drawbacks described, the book is a great source for researchers in the IR&S fields in general and in the CIR field in particular. Furthermore, different chapters of this book also might be of interest to members from other communities. For instance, librarians responsible for library instruction might find the chapter on search training by Lucas and Topi helpful in their work. Cognitive psychologists would probably be intrigued by Spink and Cole's view on multitasking. IR interface designers will likely find the chapter on KDV by Hook and Borner very beneficial. And students taking IR-related courses might find the thorough literature reviews by Ruthven and Kelly particularly useful when beginning their own research."

Languages

Types