Search (106 results, page 1 of 6)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.14
    0.13509315 = product of:
      0.1801242 = sum of:
        0.13678056 = weight(_text_:digital in 3387) [ClassicSimilarity], result of:
          0.13678056 = score(doc=3387,freq=14.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.6918357 = fieldWeight in 3387, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=3387)
        0.022971334 = weight(_text_:library in 3387) [ClassicSimilarity], result of:
          0.022971334 = score(doc=3387,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.17430481 = fieldWeight in 3387, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=3387)
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.0407446 = score(doc=3387,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  2. Haslhofer, B.; Knezevié, P.: ¬The BRICKS digital library infrastructure (2009) 0.11
    0.11108878 = product of:
      0.14811838 = sum of:
        0.086163655 = weight(_text_:digital in 3384) [ClassicSimilarity], result of:
          0.086163655 = score(doc=3384,freq=8.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.4358155 = fieldWeight in 3384, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
        0.027071979 = weight(_text_:library in 3384) [ClassicSimilarity], result of:
          0.027071979 = score(doc=3384,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.2054202 = fieldWeight in 3384, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3384)
        0.034882743 = product of:
          0.069765486 = sum of:
            0.069765486 = weight(_text_:project in 3384) [ClassicSimilarity], result of:
              0.069765486 = score(doc=3384,freq=4.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.32976416 = fieldWeight in 3384, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3384)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Service-oriented architectures, and the wider acceptance of decentralized peer-to-peer architectures enable the transition from integrated, centrally controlled systems to federated and dynamic configurable systems. The benefits for the individual service providers and users are robustness of the system, independence of central authorities and flexibility in the usage of services. This chapter provides details of the European project BRICKS, which aims at enabling integrated access to distributed resources in the Cultural Heritage domain. The target audience is broad and heterogeneous and involves cultural heritage and educational institutions, the research community, industry, and the general public. The project idea is motivated by the fact that the amount of digital information and digitized content is continuously increasing but still much effort has to be expended to discover and access it. The reasons for such a situation are heterogeneous data formats, restricted access, proprietary access interfaces, etc. Typical usage scenarios are integrated queries among several knowledge resource, e.g. to discover all Italian artifacts from the Renaissance in European museums. Another example is to follow the life cycle of historic documents, whose physical copies are distributed all over Europe. A standard method for integrated access is to place all available content and metadata in a central place. Unfortunately, such a solution requires a quite powerful and costly infrastructure if the volume of data is large. Considerations of cost optimization are highly important for Cultural Heritage institutions, especially if they are funded from public money. Therefore, better usage of the existing resources, i.e. a decentralized/P2P approach promises to deliver a significantly less costly system,and does not mean sacrificing too much on the performance side.
    Object
    BRICKS digital library
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  3. Soergel, D.: Digital libraries and knowledge organization (2009) 0.10
    0.096022196 = product of:
      0.19204439 = sum of:
        0.14923984 = weight(_text_:digital in 672) [ClassicSimilarity], result of:
          0.14923984 = score(doc=672,freq=24.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.7548547 = fieldWeight in 672, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=672)
        0.042804558 = weight(_text_:library in 672) [ClassicSimilarity], result of:
          0.042804558 = score(doc=672,freq=10.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.32479787 = fieldWeight in 672, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=672)
      0.5 = coord(2/4)
    
    Abstract
    This chapter describes not so much what digital libraries are but what digital libraries with semantic support could and should be. It discusses the nature of Knowledge Organization Systems (KOS) and how KOS can support digital library users. It projects a vision for designers to make and for users to demand better digital libraries. What is a digital library? The term \Digital Library" (DL) is used to refer to a range of systems, from digital object and metadata repositories, reference-linking systems, archives, and content management systems to complex systems that integrate advanced digital library services and support for research and practice communities. A DL may offer many technology-enabled functions and services that support users, both as information producers and as information users. Many of these functions appear in information systems that would not normally be considered digital libraries, making boundaries even more blurry. Instead of pursuing the hopeless quest of coming up with the definition of digital library, we present a framework that allows a clear and somewhat standardized description of any information system so that users can select the system(s) that best meet their requirements. Section 2 gives a broad outline for more detail see the DELOS DL Reference Model.
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  4. Nelson, S.J.; Powell, T.; Srinivasan, S.; Humphreys, B.L.: Unified Medical Language System® (UMLS®) Project (2009) 0.09
    0.08533767 = product of:
      0.11378356 = sum of:
        0.051698197 = weight(_text_:digital in 4701) [ClassicSimilarity], result of:
          0.051698197 = score(doc=4701,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.26148933 = fieldWeight in 4701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=4701)
        0.032486375 = weight(_text_:library in 4701) [ClassicSimilarity], result of:
          0.032486375 = score(doc=4701,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.24650425 = fieldWeight in 4701, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=4701)
        0.029598987 = product of:
          0.059197973 = sum of:
            0.059197973 = weight(_text_:project in 4701) [ClassicSimilarity], result of:
              0.059197973 = score(doc=4701,freq=2.0), product of:
                0.21156175 = queryWeight, product of:
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.050121464 = queryNorm
                0.27981415 = fieldWeight in 4701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.220981 = idf(docFreq=1764, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4701)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The Unified Medical Language System (UMLS) is a long-term research and development effort of the National Library of Medicine, aimed at assisting users in finding information from multiple sources without understanding the intricacies of each particular source. Consisting of three major knowledge sources, a Metathesaurus, a Semantic Network, and a set of lexical processing tools, the UMLS is produced and released twice yearly. Recent efforts have been aimed at expanding coverage in genetics and in clinical vocabularies designed for use in medical record systems. RxNorm, produced and released on a monthly basis, with weekly updates, is an outgrowth of the UMLS, focusing on medication terminology.
    Content
    Digital unter: http://dx.doi.org/10.1081/E-ELIS3-120043969. Vgl.: http://www.tandfonline.com/doi/book/10.1081/E-ELIS3.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  5. Kruk, S.R.; Westerki, A.; Kruk, E.: Architecture of semantic digital libraries (2009) 0.08
    0.083210856 = product of:
      0.16642171 = sum of:
        0.1266342 = weight(_text_:digital in 3379) [ClassicSimilarity], result of:
          0.1266342 = score(doc=3379,freq=12.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.6405154 = fieldWeight in 3379, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=3379)
        0.039787523 = weight(_text_:library in 3379) [ClassicSimilarity], result of:
          0.039787523 = score(doc=3379,freq=6.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.30190483 = fieldWeight in 3379, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=3379)
      0.5 = coord(2/4)
    
    Abstract
    The main motivation of this chapter was to gather existing requirements and solutions, and to present a generic architectural design of semantic digital libraries. This design is meant to answer a number of requirements, such as interoperability or ability to exchange resources and solutions, and set up the foundations for the best practices in the new domain of semantic digital libraries. We start by presenting the library from different high-level perspectives, i.e., user (see Sect. 2) and metadata (see Sect. 1) perspective; this overview narrows the scope and puts emphasis on certain aspects related to the system perspective, i.e., the architecture of the actual digital library management system. We conclude by presenting the system architecture from three perspectives: top-down layered architecture (see Sect. 3), vertical architecture of core services (see Sect. 4), and stack of enabling infrastructures (see Sect. 5); based upon the observations and evaluation of the contemporary state of the art presented in the previous sections, these last three subsections will describe an in-depth model of the digital library management system.
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  6. Kruk, S.R.; Cygan, M.; Gzella, A.; Woroniecki, T.; Dabrowski, M.: JeromeDL: the social semantic digital library (2009) 0.08
    0.08077167 = product of:
      0.16154334 = sum of:
        0.11560067 = weight(_text_:digital in 3383) [ClassicSimilarity], result of:
          0.11560067 = score(doc=3383,freq=10.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.58470786 = fieldWeight in 3383, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=3383)
        0.045942668 = weight(_text_:library in 3383) [ClassicSimilarity], result of:
          0.045942668 = score(doc=3383,freq=8.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.34860963 = fieldWeight in 3383, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=3383)
      0.5 = coord(2/4)
    
    Abstract
    The initial research on semantic digital libraries resulted in the design and implementation of JeromeDL; current research on online social networking and information discovery delivered new sets of features that were implemented in JeromeDL. Eventually, this digital library has been redesigned to follow the architecture of a social semantic digital library. JeromeDL describes each resource using three types of metadata: structure, bibliographic and community. It delivers services leveraging each of these information types. Annotations based on the structure and legacy metadata, and bibliographic ontology are rendered to the users in one, mixed, representation of library resources. Community annotations are managed by separate services, such as social semantic collaborative filtering or blogging component
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  7. Bloehdorn, S.; Cimiano, P.; Duke, A.; Haase, P.; Heizmann, J.; Thurlow, I.; Völker, J.: Ontology-based question answering for digital libraries (2007) 0.07
    0.06794138 = product of:
      0.13588277 = sum of:
        0.10339639 = weight(_text_:digital in 2424) [ClassicSimilarity], result of:
          0.10339639 = score(doc=2424,freq=8.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.52297866 = fieldWeight in 2424, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=2424)
        0.032486375 = weight(_text_:library in 2424) [ClassicSimilarity], result of:
          0.032486375 = score(doc=2424,freq=4.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.24650425 = fieldWeight in 2424, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=2424)
      0.5 = coord(2/4)
    
    Abstract
    In this paper we present an approach to question answering over heterogeneous knowledge sources that makes use of different ontology management components within the scenario of a digital library application. We present a principled framework for integrating structured metadata and unstructured resource content in a seamless manner which can then be flexibly queried using structured queries expressed in natural language. The novelty of the approach lies in the combination of different semantic technologies providing a clear benefit for the application scenario considered. The resulting system is implemented as part of the digital library of British Telecommunications (BT). The original contribution of our paper lies in the architecture we present allowing for the non-straightforward integration of the different components we consider.
    Source
    Research and advanced technology for digital libraries : 11th European conference, ECDL 2007 / Budapest, Hungary, September 16-21, 2007, proceedings. Eds.: L. Kovacs et al
  8. Pepper, S.: Topic maps (2009) 0.06
    0.05604878 = product of:
      0.11209756 = sum of:
        0.085297674 = weight(_text_:digital in 3149) [ClassicSimilarity], result of:
          0.085297674 = score(doc=3149,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.43143538 = fieldWeight in 3149, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3149)
        0.026799891 = weight(_text_:library in 3149) [ClassicSimilarity], result of:
          0.026799891 = score(doc=3149,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20335563 = fieldWeight in 3149, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3149)
      0.5 = coord(2/4)
    
    Abstract
    Topic Maps is an international standard technology for describing knowledge structures and using them to improve the findability of information. It is based on a formal model that subsumes those of traditional finding aids such as indexes, glossaries, and thesauri, and extends them to cater for the additional complexities of digital information. Topic Maps is increasingly used in enterprise information integration, knowledge management, e-learning, and digital libraries, and as the foundation for Web-based information delivery solutions. This entry provides a comprehensive treatment of the core concepts, as well as describing the background and current status of the standard and its relationship to traditional knowledge organization techniques.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  9. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.05
    0.048046995 = product of:
      0.09609399 = sum of:
        0.068930924 = weight(_text_:digital in 3376) [ClassicSimilarity], result of:
          0.068930924 = score(doc=3376,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.34865242 = fieldWeight in 3376, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0625 = fieldNorm(doc=3376)
        0.027163066 = product of:
          0.054326132 = sum of:
            0.054326132 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.054326132 = score(doc=3376,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    31. 7.2010 16:58:22
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  10. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.05
    0.048046995 = product of:
      0.09609399 = sum of:
        0.068930924 = weight(_text_:digital in 318) [ClassicSimilarity], result of:
          0.068930924 = score(doc=318,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.34865242 = fieldWeight in 318, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0625 = fieldNorm(doc=318)
        0.027163066 = product of:
          0.054326132 = sum of:
            0.054326132 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.054326132 = score(doc=318,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In der Session "Knowledge Representation" auf der ISI 2021 wurden unter der Moderation von Jürgen Reischer (Uni Regensburg) drei Projekte vorgestellt, in denen Knowledge Representation mit RDF umgesetzt wird. Die Domänen sind erfreulich unterschiedlich, die gemeinsame Klammer indes ist die Absicht, den Zugang zu Forschungsdaten zu verbessern: - Japanese Visual Media Graph - Taxonomy of Digital Research Activities in the Humanities - Forschungsdaten im konzeptuellen Modell von FRBR
    Date
    22. 5.2021 12:43:05
  11. Jiang, Y.-C.; Li, H.: ¬The theoretical basis and basic principles of knowledge network construction in digital library (2023) 0.05
    0.048041813 = product of:
      0.096083626 = sum of:
        0.073112294 = weight(_text_:digital in 1130) [ClassicSimilarity], result of:
          0.073112294 = score(doc=1130,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.36980176 = fieldWeight in 1130, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=1130)
        0.022971334 = weight(_text_:library in 1130) [ClassicSimilarity], result of:
          0.022971334 = score(doc=1130,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.17430481 = fieldWeight in 1130, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.046875 = fieldNorm(doc=1130)
      0.5 = coord(2/4)
    
    Abstract
    Knowledge network construction (KNC) is the essence of dynamic knowledge architecture, and is helpful to illustrate ubiquitous knowledge service in digital libraries (DLs). The authors explore its theoretical foundations and basic rules to elucidate the basic principles of KNC in DLs. The results indicate that world general connection, small-world phenomenon, relevance theory, unity and continuity of science development have been the production tool, architecture aim and scientific foundation of KNC in DLs. By analyzing both the characteristics of KNC based on different types of knowledge linking and the relationships between different forms of knowledge and the appropriate ways of knowledge linking, the basic principle of KNC is summarized as follows: let each kind of knowledge linking form each shows its ability, each kind of knowledge manifestation each answer the purpose intended in practice, and then subjective knowledge network and objective knowledge network are organically combined. This will lay a solid theoretical foundation and provide an action guide for DLs to construct knowledge networks.
  12. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.05
    0.046742298 = product of:
      0.093484595 = sum of:
        0.073112294 = weight(_text_:digital in 2418) [ClassicSimilarity], result of:
          0.073112294 = score(doc=2418,freq=4.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.36980176 = fieldWeight in 2418, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=2418)
        0.0203723 = product of:
          0.0407446 = sum of:
            0.0407446 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.0407446 = score(doc=2418,freq=2.0), product of:
                0.17551683 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050121464 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  13. Bruijn, J. de; Fensel, D.: Ontologies and their definition (2009) 0.04
    0.043557227 = product of:
      0.08711445 = sum of:
        0.060314562 = weight(_text_:digital in 3792) [ClassicSimilarity], result of:
          0.060314562 = score(doc=3792,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 3792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3792)
        0.026799891 = weight(_text_:library in 3792) [ClassicSimilarity], result of:
          0.026799891 = score(doc=3792,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20335563 = fieldWeight in 3792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3792)
      0.5 = coord(2/4)
    
    Content
    Digital unter: http://dx.doi.org/10.1081/E-ELIS3-120039479. Vgl.: http://www.tandfonline.com/doi/book/10.1081/E-ELIS3.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  14. Green, R.: WordNet (2009) 0.04
    0.043557227 = product of:
      0.08711445 = sum of:
        0.060314562 = weight(_text_:digital in 4696) [ClassicSimilarity], result of:
          0.060314562 = score(doc=4696,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.30507088 = fieldWeight in 4696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4696)
        0.026799891 = weight(_text_:library in 4696) [ClassicSimilarity], result of:
          0.026799891 = score(doc=4696,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.20335563 = fieldWeight in 4696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4696)
      0.5 = coord(2/4)
    
    Content
    Digital unter: http://dx.doi.org/10.1081/E-ELIS3-120044739. Vgl.: http://www.tandfonline.com/doi/book/10.1081/E-ELIS3.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  15. Kruk, S.R.; McDaniel, B.: Conclusions: The future of semantic digital libraries (2009) 0.04
    0.03693497 = product of:
      0.14773989 = sum of:
        0.14773989 = weight(_text_:digital in 3372) [ClassicSimilarity], result of:
          0.14773989 = score(doc=3372,freq=12.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.74726796 = fieldWeight in 3372, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3372)
      0.25 = coord(1/4)
    
    Abstract
    Through out this book we showed that Semantic Digital Libraries are no longer an abstract concept; we have presented both underlying technologies, examples of semantic digital libraries, and their applications. However, the bright future of this technology only begins, and we expect more and more genuine applications of semantic digital libraries to emerge. In this section we will spotlight on three of, in our opinion, the most promising of applications: semantic museums, eLearning 2.0, and semantic digital libraries in enterprises.
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  16. Kruk, S.R.; McDaniel, B.: Goals of semantic digital libraries (2009) 0.03
    0.03419514 = product of:
      0.13678056 = sum of:
        0.13678056 = weight(_text_:digital in 3378) [ClassicSimilarity], result of:
          0.13678056 = score(doc=3378,freq=14.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.6918357 = fieldWeight in 3378, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=3378)
      0.25 = coord(1/4)
    
    Abstract
    Digital libraries have become commodity in the current world of Internet. More and more information is produced, and more and more non-digital information is being rendered available. The new, more user friendly, community-oriented technologies used throughout the Internet are raising the bar of expectations. Digital libraries cannot stand still with their technologies; if not for the sake of handling rapidly growing amount and diversity of information, they must provide for better user experience matching and overgrowing standards set by the industry. The next generation of digital libraries combine technological solutions, such as P2P, SOA, or Grid, with recent research on semantics and social networks. These solutions are put into practice to answer a variety of requirements imposed on digital libraries.
    Source
    Semantic digital libraries. Eds.: S.R. Kruk, B. McDaniel
  17. Oliveira Lima, G.A.B. de: Hypertext model - HTXM : a model for hypertext organization of documents (2008) 0.03
    0.031112304 = product of:
      0.062224608 = sum of:
        0.043081827 = weight(_text_:digital in 2504) [ClassicSimilarity], result of:
          0.043081827 = score(doc=2504,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 2504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2504)
        0.01914278 = weight(_text_:library in 2504) [ClassicSimilarity], result of:
          0.01914278 = score(doc=2504,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 2504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2504)
      0.5 = coord(2/4)
    
    Content
    This article reports an applied research on the construction and implementation of a semantically structured conceptual prototype to help in the organization and representation of human knowledge in hypertextual systems, based on four references: the Facet Analysis Theory (FAT), the Conceptual Map Theory, semantic structure of hypertext links and the technical guidelines of the Associacao Brasileira de Normas Técnicas (ABNT). This prototype, called Modelo Hipertextual para Organizacao de Documentos (MHTX) - Model For Hypertext Organization of Documents HTXM - is formed by a semantic structure called Conceptual Map (CM) and Expanded Summary (ES), the latter based on the summary of a selected doctoral thesis to which access points were designed. In the future, this prototype maybe used to implement a digital libraty called BTDECI - UFMG (Biblioteca de Teses e Dissertacöes do Programa de Pós-Graduacao da Escola de Ciência da Informacao da UFMG - Library of Theses and Dissertations of the Graduate Program of School of Information Science of Universidade Federal de Minas Gerais).
  18. Almeida, M.B.; Felipe, E.R.; Barcelos, R.: Toward a document-centered ontological theory for information architecture in corporations (2020) 0.03
    0.031112304 = product of:
      0.062224608 = sum of:
        0.043081827 = weight(_text_:digital in 8) [ClassicSimilarity], result of:
          0.043081827 = score(doc=8,freq=2.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.21790776 = fieldWeight in 8, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.0390625 = fieldNorm(doc=8)
        0.01914278 = weight(_text_:library in 8) [ClassicSimilarity], result of:
          0.01914278 = score(doc=8,freq=2.0), product of:
            0.1317883 = queryWeight, product of:
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.050121464 = queryNorm
            0.14525402 = fieldWeight in 8, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6293786 = idf(docFreq=8668, maxDocs=44218)
              0.0390625 = fieldNorm(doc=8)
      0.5 = coord(2/4)
    
    Abstract
    The beginning of the 21st century attested to the first movements toward information architecture (IA), originating from the field of library and information science (LIS). IA is acknowledged as an important meta-discipline concerned with the design, implementation, and maintenance of digital information spaces. Despite the relevance of IA, there is little research about the subject within LIS, and still less if one considers initiatives for creating a theory for IA. In this article, we provide a theory for IA and describe the resources needed to create it through ontological models. We also choose the "document" as the key entity for such theory, contemplating kinds of documents that not only serve to register information, but also create claims and obligations in society. To achieve our goals, we provide a background for subtheories from LIS and from Applied Ontology. As a result, we present some basic theory for IA in the form of a formal framework to represent corporations in which IA activities take place, acknowledging that our approach is de facto a subset of IA we call the enterprise information architecture (EAI) approach. By doing this, we highlight the effects that documents cause within corporations in the scope of EIA.
  19. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.03
    0.025849098 = product of:
      0.10339639 = sum of:
        0.10339639 = weight(_text_:digital in 3731) [ClassicSimilarity], result of:
          0.10339639 = score(doc=3731,freq=8.0), product of:
            0.19770671 = queryWeight, product of:
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.050121464 = queryNorm
            0.52297866 = fieldWeight in 3731, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.944552 = idf(docFreq=2326, maxDocs=44218)
              0.046875 = fieldNorm(doc=3731)
      0.25 = coord(1/4)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
  20. Renear, A.H.; Wickett, K.M.; Urban, R.J.; Dubin, D.; Shreeves, S.L.: Collection/item metadata relationships (2008) 0.02
    0.024985643 = product of:
      0.09994257 = sum of:
        0.09994257 = sum of:
          0.059197973 = weight(_text_:project in 2623) [ClassicSimilarity], result of:
            0.059197973 = score(doc=2623,freq=2.0), product of:
              0.21156175 = queryWeight, product of:
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.050121464 = queryNorm
              0.27981415 = fieldWeight in 2623, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.220981 = idf(docFreq=1764, maxDocs=44218)
                0.046875 = fieldNorm(doc=2623)
          0.0407446 = weight(_text_:22 in 2623) [ClassicSimilarity], result of:
            0.0407446 = score(doc=2623,freq=2.0), product of:
              0.17551683 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050121464 = queryNorm
              0.23214069 = fieldWeight in 2623, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2623)
      0.25 = coord(1/4)
    
    Abstract
    Contemporary retrieval systems, which search across collections, usually ignore collection-level metadata. Alternative approaches, exploiting collection-level information, will require an understanding of the various kinds of relationships that can obtain between collection-level and item-level metadata. This paper outlines the problem and describes a project that is developing a logic-based framework for classifying collection/item metadata relationships. This framework will support (i) metadata specification developers defining metadata elements, (ii) metadata creators describing objects, and (iii) system designers implementing systems that take advantage of collection-level metadata. We present three examples of collection/item metadata relationship categories, attribute/value-propagation, value-propagation, and value-constraint and show that even in these simple cases a precise formulation requires modal notions in addition to first-order logic. These formulations are related to recent work in information retrieval and ontology evaluation.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas

Authors

Years

Languages

  • e 96
  • d 10