Search (9 results, page 1 of 1)

  • × subject_ss:"Information retrieval"
  1. ¬The thesaurus: review, renaissance and revision (2004) 0.04
    0.040530108 = product of:
      0.06079516 = sum of:
        0.04505476 = weight(_text_:sites in 3243) [ClassicSimilarity], result of:
          0.04505476 = score(doc=3243,freq=2.0), product of:
            0.26002133 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.049739745 = queryNorm
            0.17327332 = fieldWeight in 3243, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3243)
        0.0157404 = product of:
          0.0314808 = sum of:
            0.0314808 = weight(_text_:index in 3243) [ClassicSimilarity], result of:
              0.0314808 = score(doc=3243,freq=2.0), product of:
                0.21735094 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.049739745 = queryNorm
                0.14483857 = fieldWeight in 3243, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3243)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Rez. in: KO 32(2005) no.2, S.95-97 (A. Gilchrist):"It might be thought unfortunate that the word thesaurus is assonant with prehistoric beasts but as this book clearly demonstrates, the thesaurus is undergoing a notable revival, and we can remind ourselves that the word comes from the Greek thesaurus, meaning a treasury. This is a useful and timely source book, bringing together ten chapters, following an Editorial introduction and culminating in an interview with a member of the team responsible for revising the NISO Standard Guidelines for the construction, format and management of monolingual thesauri; formal proof of the thesaural renaissance. Though predominantly an American publication, it is good to see four English authors as well as one from Canada and one from Denmark; and with a good balance of academics and practitioners. This has helped to widen the net in the citing of useful references. While the techniques of thesaurus construction are still basically sound, the Editors, in their introduction, point out that the thesaurus, in its sense of an information retrieval tool is almost exactly 50 years old, and that the information environment of today is radically different. They claim three purposes for the compilation: "to acquaint or remind the Library and Information Science community of the history of the development of the thesaurus and standards for thesaurus construction. to provide bibliographies and tutorials from which any reader can become more grounded in her or his understanding of thesaurus construction, use and evaluation. to address topics related to thesauri but that are unique to the current digital environment, or network of networks." This last purpose, understandably, tends to be the slightly more tentative part of the book, but as Rosenfeld and Morville said in their book Information architecture for the World Wide Web "thesauri [will] become a key tool for dealing with the growing size and importance of web sites and intranets". The evidence supporting their belief has been growing steadily in the seven years since the first edition was published.
    The didactic parts of the book are a collection of exercises, readings and resources constituting a "Teach yourself " chapter written by Alan Thomas, ending with the warning that "New challenges include how to devise multi-functional and usersensitive vocabularies, corporate taxonomies and ontologies, and how to apply the transformative technology to them." This is absolutely right, and there is a need for some good writing that would tackle these issues. Another chapter, by James Shearer, skilfully manages to compress a practical exercise in building a thesaurus into some twenty A5 size pages. The third chapter in this set, by Marianne Lykke Nielsen, contains extensive reviews of key issues and selected readings under eight headings from the concept of the thesaurus, through the various construction stages and ending with automatic construction techniques. . . . This is a useful and approachable book. It is a pity that the index is such a poor advertisement for vocabulary control and usefulness."
  2. Pang, B.; Lee, L.: Opinion mining and sentiment analysis (2008) 0.02
    0.020024337 = product of:
      0.06007301 = sum of:
        0.06007301 = weight(_text_:sites in 1171) [ClassicSimilarity], result of:
          0.06007301 = score(doc=1171,freq=2.0), product of:
            0.26002133 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.049739745 = queryNorm
            0.23103109 = fieldWeight in 1171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.03125 = fieldNorm(doc=1171)
      0.33333334 = coord(1/3)
    
    Abstract
    An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object. Opinion Mining and Sentiment Analysis covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. The focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. The survey includes an enumeration of the various applications, a look at general challenges and discusses categorization, extraction and summarization. Finally, it moves beyond just the technical issues, devoting significant attention to the broader implications that the development of opinion-oriented information-access services have: questions of privacy, vulnerability to manipulation, and whether or not reviews can have measurable economic impact. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided. Opinion Mining and Sentiment Analysis is the first such comprehensive survey of this vibrant and important research area and will be of interest to anyone with an interest in opinion-oriented information-seeking systems.
  3. Next generation search engines : advanced models for information retrieval (2012) 0.01
    0.0125152115 = product of:
      0.037545633 = sum of:
        0.037545633 = weight(_text_:sites in 357) [ClassicSimilarity], result of:
          0.037545633 = score(doc=357,freq=2.0), product of:
            0.26002133 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.049739745 = queryNorm
            0.14439443 = fieldWeight in 357, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.33333334 = coord(1/3)
    
    Abstract
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
  4. Introducing information management : an information research reader (2005) 0.01
    0.010012168 = product of:
      0.030036505 = sum of:
        0.030036505 = weight(_text_:sites in 440) [ClassicSimilarity], result of:
          0.030036505 = score(doc=440,freq=2.0), product of:
            0.26002133 = queryWeight, product of:
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.049739745 = queryNorm
            0.115515545 = fieldWeight in 440, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.227637 = idf(docFreq=644, maxDocs=44218)
              0.015625 = fieldNorm(doc=440)
      0.33333334 = coord(1/3)
    
    Footnote
    Allen strikes a realistic note of the institutional importance of trust across teams of academics and administrators, and subsequently of the political behavior of academics and computer services administrators/ managers and the relation of the latter to information strategy formulation. Research was conducted at 12 university sites, information strategy process documents were analyzed, and 20 informants were interviewed at each site. The study's research focused on cross-case analysis (instead of an iterative approach to collection and analysis of data), research was longitudinal, and a grounded theory approach was employed. According to the author, findings confirm a similar position taken by Pettigrew (1977): "development of information strategy is the outcome of negotiated political relations" (p. 177). And for such negotiated political relations, the author concludes, trust is a necessary ingredient. It is important to reiterate that IM's scope requires a diversity of study methods and methodologies to address all issues involved. A multiplicity of information and IM definitions and the number of local and global issues that must be addressed, along with information's significance as resource and/or commodity in different types of organizations, necessitate diversity in information research. Each chapter has demonstrated a need to cover many aspects of IM and to ensure that there is as much clarity in that effort as possible, and yet differentiation of IM from other related fields such as KM clearly remains a top issue. As with any other effort to define a field's boundaries, the task at hand is not easy, but while definitions and boundaries are being worked out, there is always an opportunity to engage in fruitful discussions about scope and critical issues in information research."
  5. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.01
    0.009893462 = product of:
      0.029680384 = sum of:
        0.029680384 = product of:
          0.05936077 = sum of:
            0.05936077 = weight(_text_:index in 4041) [ClassicSimilarity], result of:
              0.05936077 = score(doc=4041,freq=4.0), product of:
                0.21735094 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.049739745 = queryNorm
                0.27311024 = fieldWeight in 4041, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4041)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Inhalt: Boolean retrieval - The term vocabulary & postings lists - Dictionaries and tolerant retrieval - Index construction - Index compression - Scoring, term weighting & the vector space model - Computing scores in a complete search system - Evaluation in information retrieval - Relevance feedback & query expansion - XML retrieval - Probabilistic information retrieval - Language models for information retrieval - Text classification & Naive Bayes - Vector space classification - Support vector machines & machine learning on documents - Flat clustering - Hierarchical clustering - Matrix decompositions & latent semantic indexing - Web search basics - Web crawling and indexes - Link analysis Vgl. die digitale Fassung unter: http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf.
  6. Ellis, D.: Progress and problems in information retrieval (1996) 0.01
    0.008985398 = product of:
      0.026956195 = sum of:
        0.026956195 = product of:
          0.05391239 = sum of:
            0.05391239 = weight(_text_:22 in 789) [ClassicSimilarity], result of:
              0.05391239 = score(doc=789,freq=2.0), product of:
                0.1741801 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049739745 = queryNorm
                0.30952093 = fieldWeight in 789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=789)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26. 7.2002 20:22:46
  7. Lancaster, F.W.: Vocabulary control for information retrieval (1986) 0.01
    0.008985398 = product of:
      0.026956195 = sum of:
        0.026956195 = product of:
          0.05391239 = sum of:
            0.05391239 = weight(_text_:22 in 217) [ClassicSimilarity], result of:
              0.05391239 = score(doc=217,freq=2.0), product of:
                0.1741801 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049739745 = queryNorm
                0.30952093 = fieldWeight in 217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=217)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 4.2007 10:07:51
  8. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.0067390483 = product of:
      0.020217145 = sum of:
        0.020217145 = product of:
          0.04043429 = sum of:
            0.04043429 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.04043429 = score(doc=987,freq=2.0), product of:
                0.1741801 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049739745 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    23. 7.2017 13:49:22
  9. Anderson, J.D.; Perez-Carballo, J.: Information retrieval design : principles and options for information description, organization, display, and access in information retrieval databases, digital libraries, catalogs, and indexes (2005) 0.00
    0.002807937 = product of:
      0.008423811 = sum of:
        0.008423811 = product of:
          0.016847622 = sum of:
            0.016847622 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
              0.016847622 = score(doc=1833,freq=2.0), product of:
                0.1741801 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049739745 = queryNorm
                0.09672529 = fieldWeight in 1833, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1833)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Inhalt: Chapters 2 to 5: Scopes, Domains, and Display Media (pp. 47-102) Chapters 6 to 8: Documents, Analysis, and Indexing (pp. 103-176) Chapters 9 to 10: Exhaustivity and Specificity (pp. 177-196) Chapters 11 to 13: Displayed/Nondisplayed Indexes, Syntax, and Vocabulary Management (pp. 197-364) Chapters 14 to 16: Surrogation, Locators, and Surrogate Displays (pp. 365-390) Chapters 17 and 18: Arrangement and Size of Displayed Indexes (pp. 391-446) Chapters 19 to 21: Search Interface, Record Format, and Full-Text Display (pp. 447-536) Chapter 22: Implementation and Evaluation (pp. 537-541)

Years

Types