Search (17 results, page 1 of 1)

  • × author_ss:"Dahlberg, I."
  1. Dahlberg, I.: Knowledge organization : a new science? (2006) 0.04
    0.043642364 = product of:
      0.08728473 = sum of:
        0.00823978 = product of:
          0.03295912 = sum of:
            0.03295912 = weight(_text_:based in 3375) [ClassicSimilarity], result of:
              0.03295912 = score(doc=3375,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23302436 = fieldWeight in 3375, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3375)
          0.25 = coord(1/4)
        0.079044946 = weight(_text_:term in 3375) [ClassicSimilarity], result of:
          0.079044946 = score(doc=3375,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.36086982 = fieldWeight in 3375, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3375)
      0.5 = coord(2/4)
    
    Abstract
    In ISKO's name, the term "Knowledge Organization" (KO) denotes already the object and the activity area significant for the existence of any science. Both areas are outlined and their specific contents shown. Also a survey of its special subfields is given. The sciencetheoretical foundation of Knowledge Organization as a new scientific discipline is based on the propositional concept of science. Within a universal system of the sciences, KO has been regarded as a subfield of Science of Science. Concludingly it is proposed to find the necessary institution for work in concerted effort of scientists, knowledge organizers and terminologists on the collection, definition, and systematization of concepts of all subject fields, utilizing the Information Coding Classification (ICC) as the necessary categorizing structure.
  2. Dahlberg, I.: Why a new universal classification system is needed (2017) 0.03
    0.031786613 = product of:
      0.06357323 = sum of:
        0.00823978 = product of:
          0.03295912 = sum of:
            0.03295912 = weight(_text_:based in 3614) [ClassicSimilarity], result of:
              0.03295912 = score(doc=3614,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23302436 = fieldWeight in 3614, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3614)
          0.25 = coord(1/4)
        0.055333447 = product of:
          0.11066689 = sum of:
            0.11066689 = weight(_text_:assessment in 3614) [ClassicSimilarity], result of:
              0.11066689 = score(doc=3614,freq=2.0), product of:
                0.25917634 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.04694356 = queryNorm
                0.4269946 = fieldWeight in 3614, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3614)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Research history of the last 70 years highlights various systems for contents assessment and retrieval of scientific literature, such as universal classifications, thesauri, ontologies etc., which have followed developments of their own, notwithstanding a general trend towards interoperability, i.e. either to become instruments for cooperation or to widen their scope to encompass neighbouring fields within their framework. In the case of thesauri and ontologies, the endeavour to upgrade them into a universal system was bound to miscarry. This paper purports to indicate ways to gain from past experience and possibly rally material achievements while updating and promoting the ontologically-based faceted Information Coding Classification as a progressive universal system fit for meeting whatever requirements in the fields of information and science at large.
  3. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.02
    0.022704724 = product of:
      0.04540945 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 4824) [ClassicSimilarity], result of:
              0.023542227 = score(doc=4824,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 4824, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4824)
          0.25 = coord(1/4)
        0.039523892 = product of:
          0.079047784 = sum of:
            0.079047784 = weight(_text_:assessment in 4824) [ClassicSimilarity], result of:
              0.079047784 = score(doc=4824,freq=2.0), product of:
                0.25917634 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30499613 = fieldWeight in 4824, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4824)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
  4. Dahlberg, I.: How to improve ISKO's standing : ten desiderata for knowledge organization (2011) 0.02
    0.016196027 = product of:
      0.032392055 = sum of:
        0.004161717 = product of:
          0.016646868 = sum of:
            0.016646868 = weight(_text_:based in 4300) [ClassicSimilarity], result of:
              0.016646868 = score(doc=4300,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.11769507 = fieldWeight in 4300, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4300)
          0.25 = coord(1/4)
        0.028230337 = weight(_text_:term in 4300) [ClassicSimilarity], result of:
          0.028230337 = score(doc=4300,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.12888208 = fieldWeight in 4300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4300)
      0.5 = coord(2/4)
    
    Abstract
    In 2009 ISKO had its 20th anniversary, a time for review and reflection on what might be envisaged to further Knowledge Organization in the forthcoming years. In addition to some proposals set forth at the end of this contribution, ten desiderata appear urgent. A preliminary condition to any other consideration is the recognition of the fundamental difference in the organization of knowledge between the concept (i.e., the unit of knowledge)-the conceptual level-and the word, term or code-the verbal level-and the need for implementing this distinction in theory and practice (Desideratum 1). On this basis, some further proposals are enunciated. The 2nd proposition concerns the surveying of extant classification systems, thesauri, and other means of organizing, ordering, and indexing knowledge; the 3rd proposition envisages the improvement of expert training in Knowledge Organization (KO), also with regard to curricula and professional acknowledgment. Nr.4) refers to the professionalization of the hitherto rather neglected national ISKO secretariats, as well as the international ISKO secretariat. Nr.5) urges a systematic survey of KO-relevant concepts to serve as a model or standard for other subject fields, Nr.6) claims the establishment of KO Institutes, Nr.7) views consultancy to the effect that anybody interested in KO may approach ISKO for help, Nr 8) urges ISKO's promotion of membership and chapters in as many countries as possible, Nr.9) presses for intensification of ISKO's publication activities, and Nr.10) pleads for KO as a scientific discipline on its own.
    Content
    6. Establishment of national Knowledge Organization Institutes should be scheduled by national chapters, planned energetically and submitted to corresponding administrative authorities for support. They could be attached to research institutions, e.g., the Max-Planck or Fraunhofer Institutes in Germany or to universities. Their scope and research areas relate to the elaboration of knowledge systems of subject related concepts, according to Desideratum 1, and may be connected to training activities and KOsubject-related research work. 7. ISKO experts should not accept to be impressed by Internet and Computer Science, but should demonstrate their expertise more actively on the public plane. They should tend to take a leading part in the ISKO Secretariats and the KO Institutes, and act as consultants and informants, as well as editors of statistics and other publications. 8. All colleagues trained in the field of classification/indexing and thesauri construction and active in different countries should be identified and approached for membership in ISKO. This would have to be accomplished by the General Secretariat with the collaboration of the experts in the different secretariats of the countries, as soon as they start to work. The more members ISKO will have, the greater will be its reputation and influence. But it will also prove its professionalism by the quality of its products, especially its innovating conceptual order systems to come. 9. ISKO should-especially in view of global expansion-intensify the promotion of knowledge about its own subject area through the publications mentioned here and in further publications as deemed necessary. It should be made clear that, especially in ISKO's own publications, professional subject indexes are a sine qua non. 10. 1) Knowledge Organization, having arisen from librarianship and documentation, the contents of which has many points of contact with numerous application fields, should-although still linked up with its areas of descent-be recognized in the long run as an independent autonomous discipline to be located under the science of science, since only thereby can it fully play its role as an equal partner in all application fields; and, 2) An "at-a-first-glance knowledge order" could be implemented through the Information Coding Classification (ICC), as this system is based on an entirely new approach, namely based on general object areas, thus deviating from discipline-oriented main classes of the current main universal classification systems. It can therefore recoup by simple display on screen the hitherto lost overview of all knowledge areas and fields. On "one look", one perceives 9 object areas subdivided into 9 aspects which break down into 81 subject areas with their 729 subject fields, including further special fields. The synthesis and place of order of all knowledge becomes thus evident at a glance to everybody. Nobody would any longer be irritated by the abundance of singular apparently unrelated knowledge fields or become hesitant in his/her understanding of the world.
  5. Dahlberg, I.: Normung und Klassifikation (1978) 0.02
    0.015900511 = product of:
      0.063602045 = sum of:
        0.063602045 = product of:
          0.12720409 = sum of:
            0.12720409 = weight(_text_:22 in 1612) [ClassicSimilarity], result of:
              0.12720409 = score(doc=1612,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.77380234 = fieldWeight in 1612, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1612)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    DK-Mitteilungen. 22(1978) Nr.5/6, S.13-18
  6. Dahlberg, I.: Kolloquium Einheitsklassifikation (1975) 0.02
    0.015900511 = product of:
      0.063602045 = sum of:
        0.063602045 = product of:
          0.12720409 = sum of:
            0.12720409 = weight(_text_:22 in 1625) [ClassicSimilarity], result of:
              0.12720409 = score(doc=1625,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.77380234 = fieldWeight in 1625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1625)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Nachrichten für Dokumentation. 26(1975), S.22-25
  7. Dahlberg, I.: Conceptual definitions for INTERCONCEPT (1981) 0.02
    0.015900511 = product of:
      0.063602045 = sum of:
        0.063602045 = product of:
          0.12720409 = sum of:
            0.12720409 = weight(_text_:22 in 1630) [ClassicSimilarity], result of:
              0.12720409 = score(doc=1630,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.77380234 = fieldWeight in 1630, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1630)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    International classification. 8(1981), S.16-22
  8. De Luca, E.W.; Dahlberg, I.: Including knowledge domains from the ICC into the multilingual lexical linked data cloud (2014) 0.02
    0.015405076 = product of:
      0.030810151 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 1493) [ClassicSimilarity], result of:
              0.033293735 = score(doc=1493,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 1493, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1493)
          0.25 = coord(1/4)
        0.022486717 = product of:
          0.044973433 = sum of:
            0.044973433 = weight(_text_:22 in 1493) [ClassicSimilarity], result of:
              0.044973433 = score(doc=1493,freq=4.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.27358043 = fieldWeight in 1493, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1493)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A lot of information that is already available on the Web, or retrieved from local information systems and social networks is structured in data silos that are not semantically related. Semantic technologies make it emerge that the use of typed links that directly express their relations are an advantage for every application that can reuse the incorporated knowledge about the data. For this reason, data integration, through reengineering (e.g. triplify), or querying (e.g. D2R) is an important task in order to make information available for everyone. Thus, in order to build a semantic map of the data, we need knowledge about data items itself and the relation between heterogeneous data items. In this paper, we present our work of providing Lexical Linked Data (LLD) through a meta-model that contains all the resources and gives the possibility to retrieve and navigate them from different perspectives. We combine the existing work done on knowledge domains (based on the Information Coding Classification) within the Multilingual Lexical Linked Data Cloud (based on the RDF/OWL EurowordNet and the related integrated lexical resources (MultiWordNet, EuroWordNet, MEMODATA Lexicon, Hamburg Methaphor DB).
    Date
    22. 9.2014 19:01:18
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Dahlberg, I.: Desiderate für die Wissensorganisation (2013) 0.01
    0.014115169 = product of:
      0.056460675 = sum of:
        0.056460675 = weight(_text_:term in 915) [ClassicSimilarity], result of:
          0.056460675 = score(doc=915,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 915, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=915)
      0.25 = coord(1/4)
    
    Abstract
    In 2009 wurde die ISKO 20 Jahre alt, ein Zeitmoment für eine kurze Rückschau auf bisher Erreichtes und zur Ventilierung möglicher zukünftiger Erkenntnisse und Aktivitäten. Als wesentlich erschienen dabei - neben einigen am Schluß genannten Vorschläge - die folgenden zehn Desiderate. Ausgehend von der Notwendigkeit, den fundamentalen Unterschied zwischen dem Begriff (als die Wissenseinheit), mithin der begrifflichen Ebene, gegenüber dem Wort, dem Term oder dem Code), also der Ausdrucksebene in der Ordnung des Wissens zu erkennen und entsprechend theoretisch und praktisch zu vollziehen (Desiderat 1), werden eine Reihe von nützlichen Anregungen vorgebracht. Als Desiderat 2 somit die norwendigen Übersichten über vorhandene und benutzte Klassifikationssysteme, Thesauri und sonstige Mittel der Ordnung zur Erschließung des Wissens, 3. eine verbesserte Situation der Ausbildung zum Experten der Wissensorganisation (WO), auch Lehrpläne und Berufsbild betreffend, 4. der bisher noch nicht bedachte Ausbau von nationalen Sekretariaten und dem internationalen Sekretariat, 5. Erstellung einer systematischen Ordnung der WO-relevanten Begriffe als Modellsystem für andere Sachgebiete, 6. die Einrichtung von Instituten der WO, 7. Verfügbarkeit des ISKO-eigenen Expertenwissens für alle Anfragenden, 8. ISKO's globale Verbreitung, also Mitgliedschaften und Sektionen in allen Ländern der Welt, 9. Erweiterung der Publikationstätigkeit in der ISKO und 10. Entwicklung der WO als eigenständige Disziplin im Bereich der Wissenschaftswissenschaft.
  10. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.01
    0.011130357 = product of:
      0.04452143 = sum of:
        0.04452143 = product of:
          0.08904286 = sum of:
            0.08904286 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.08904286 = score(doc=880,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.9-22
  11. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.01
    0.007950256 = product of:
      0.031801023 = sum of:
        0.031801023 = product of:
          0.063602045 = sum of:
            0.063602045 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.063602045 = score(doc=127,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)
  12. Dahlberg, I.: Begriffsarbeit in der Wissensorganisation (2010) 0.01
    0.006360204 = product of:
      0.025440816 = sum of:
        0.025440816 = product of:
          0.05088163 = sum of:
            0.05088163 = weight(_text_:22 in 3726) [ClassicSimilarity], result of:
              0.05088163 = score(doc=3726,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30952093 = fieldWeight in 3726, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3726)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  13. Luca, E.W. de; Dahlberg, I.: ¬Die Multilingual Lexical Linked Data Cloud : eine mögliche Zugangsoptimierung? (2014) 0.00
    0.0047701527 = product of:
      0.019080611 = sum of:
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 1736) [ClassicSimilarity], result of:
              0.038161222 = score(doc=1736,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 1736, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1736)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 9.2014 19:00:13
  14. Dahlberg, I.: ¬The basis of a new universal classification system seen from a philosophy of science point of view (1992) 0.00
    0.0024970302 = product of:
      0.009988121 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 2100) [ClassicSimilarity], result of:
              0.039952483 = score(doc=2100,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 2100, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2100)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    The implications of contributions from philosophy of science to classification theory and the construction of a new universal classification system are discussed. Starting from the purposes of universal systems and what has been considered so far to serve as main classes of the six existing major universal systems, the following theories have been treated: Theory of (1) knowledge, (2) knowledge elements and units, (3) systems, (4) the science concept, (5) knowledge fields including criteria for their identification, (6) a logical syntax, (7) an overall structure of object and aspect areas. Concludingly an evaluation was made with special regard to the representability (notation) of such a theory-based universal concept system by computer and in telecommunication. This, as well as the heuristics contained in such a theory-based system facilitate its general applicability
  15. Dahlberg, I.: ICC - Information Coding Classification : principles, structure and application possibilities (1982) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 1238) [ClassicSimilarity], result of:
              0.028250674 = score(doc=1238,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 1238, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1238)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Presentation of the design, characteristics and application possibilities of a new universal classification system called ICC which is based on the premises that whenever information is to be generated or to be presented (in coded form) at least two items are necessary one of which plays the part of a subject and the other one that of the predicate of a sentence, with both these items being framed into a third one. The first basic division is by the categorial concepts denoting general entities and general aspects/determinations of being, framed into an evolutionary pattern of levels creating the 81 subject groups of ICC. Each of these subject groups is structured by a socalled systematifier, applying a recurring series of facets. The overall structure is explained and some of its application fields are outlined
  16. Dahlberg, I.: Classification structure principles : Investigations, experiences, conclusions (1998) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 47) [ClassicSimilarity], result of:
              0.028250674 = score(doc=47,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 47, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=47)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    For the purpose of establishing compatibility between the major universal classification systems in use, their structure principles were investigated and crucial points of difficulty for this undertaking were looked for, in order to relate the guiding classes, e.g. of the DDC, UDC, LCC, BC, and CC, to the subject groups of the ICC. With the help of a matrix into whose fields all subject groups of the ICC were inserted, it was not difficult at all to enter the notations of the universal classification systems mentioned. However, differences in terms of level of subdivision were found, as well as differences of occurrences. Most, though not all, of the fields of the ICC matrix could be completely filled with the corresponding notations of the other systems. Through this matrix, a first table of some 81 equivalences was established on which further work regarding the next levels of subject fields can be based
  17. Dahlberg, I.: ¬The Information Coding Classification (ICC) : a modern, theory-based fully-faceted, universal system of knowledge fields (2008) 0.00
    0.0014713892 = product of:
      0.005885557 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 1854) [ClassicSimilarity], result of:
              0.023542227 = score(doc=1854,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 1854, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1854)
          0.25 = coord(1/4)
      0.25 = coord(1/4)