Search (19 results, page 1 of 1)

  • × author_ss:"Ding, Y."
  1. Ni, C.; Shaw, D.; Lind, S.M.; Ding, Y.: Journal impact and proximity : an assessment using bibliographic features (2013) 0.12
    0.1239981 = product of:
      0.1653308 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 686) [ClassicSimilarity], result of:
              0.039952483 = score(doc=686,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 686, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=686)
          0.25 = coord(1/4)
        0.107914 = weight(_text_:frequency in 686) [ClassicSimilarity], result of:
          0.107914 = score(doc=686,freq=2.0), product of:
            0.27643865 = queryWeight, product of:
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.04694356 = queryNorm
            0.39037234 = fieldWeight in 686, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.046875 = fieldNorm(doc=686)
        0.047428668 = product of:
          0.094857335 = sum of:
            0.094857335 = weight(_text_:assessment in 686) [ClassicSimilarity], result of:
              0.094857335 = score(doc=686,freq=2.0), product of:
                0.25917634 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.04694356 = queryNorm
                0.36599535 = fieldWeight in 686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.046875 = fieldNorm(doc=686)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Journals in the Information Science & Library Science category of Journal Citation Reports (JCR) were compared using both bibliometric and bibliographic features. Data collected covered journal impact factor (JIF), number of issues per year, number of authors per article, longevity, editorial board membership, frequency of publication, number of databases indexing the journal, number of aggregators providing full-text access, country of publication, JCR categories, Dewey decimal classification, and journal statement of scope. Three features significantly correlated with JIF: number of editorial board members and number of JCR categories in which a journal is listed correlated positively; journal longevity correlated negatively with JIF. Coword analysis of journal descriptions provided a proximity clustering of journals, which differed considerably from the clusters based on editorial board membership. Finally, a multiple linear regression model was built to predict the JIF based on all the collected bibliographic features.
  2. Li, R.; Chambers, T.; Ding, Y.; Zhang, G.; Meng, L.: Patent citation analysis : calculating science linkage based on citing motivation (2014) 0.05
    0.05084972 = product of:
      0.10169944 = sum of:
        0.011771114 = product of:
          0.047084454 = sum of:
            0.047084454 = weight(_text_:based in 1257) [ClassicSimilarity], result of:
              0.047084454 = score(doc=1257,freq=8.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.33289194 = fieldWeight in 1257, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1257)
          0.25 = coord(1/4)
        0.08992833 = weight(_text_:frequency in 1257) [ClassicSimilarity], result of:
          0.08992833 = score(doc=1257,freq=2.0), product of:
            0.27643865 = queryWeight, product of:
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.04694356 = queryNorm
            0.32531026 = fieldWeight in 1257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.888745 = idf(docFreq=332, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1257)
      0.5 = coord(2/4)
    
    Abstract
    Science linkage is a widely used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy because the subject of patent citation behavior varies from inventors/applicants to examiners. In order to identify and ultimately reduce this noise, we analyzed the different citing motivations of examiners and inventors/applicants. We built 4 hypotheses based upon our study of patent law, the unique economic nature of a patent, and a patent citation's market effect. To test our hypotheses, we conducted an expert survey based on our science linkage calculation in the domain of catalyst from U.S. patent data (2006-2009) over 3 types of citations: self-citation by inventor/applicant, non-self-citation by inventor/applicant, and citation by examiner. According to our results, evaluated by domain experts, we conclude that the non-self-citation by inventor/applicant is quite noisy and cannot indicate science linkage and that self-citation by inventor/applicant, although limited, is more appropriate for understanding science linkage.
  3. Li, D.; Wang, Y.; Madden, A.; Ding, Y.; Sun, G.G.; Zhang, N.; Zhou, E.: Analyzing stock market trends using social media user moods and social influence (2019) 0.03
    0.032392055 = product of:
      0.06478411 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 5362) [ClassicSimilarity], result of:
              0.033293735 = score(doc=5362,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 5362, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5362)
          0.25 = coord(1/4)
        0.056460675 = weight(_text_:term in 5362) [ClassicSimilarity], result of:
          0.056460675 = score(doc=5362,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 5362, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5362)
      0.5 = coord(2/4)
    
    Abstract
    Information from microblogs is gaining increasing attention from researchers interested in analyzing fluctuations in stock markets. Behavioral financial theory draws on social psychology to explain some of the irrational behaviors associated with financial decisions to help explain some of the fluctuations. In this study we argue that social media users who demonstrate an interest in finance can offer insights into ways in which irrational behaviors may affect a stock market. To test this, we analyzed all the data collected over a 3-month period in 2011 from Tencent Weibo (one of the largest microblogging websites in China). We designed a social influence (SI)-based Tencent finance-related moods model to simulate investors' irrational behaviors, and designed a Tencent Moods-based Stock Trend Analysis (TM_STA) model to detect correlations between Tencent moods and the Hushen-300 index (one of the most important financial indexes in China). Experimental results show that the proposed method can help explain the data fluctuation. The findings support the existing behavioral financial theory, and can help to understand short-term rises and falls in a stock market. We use behavioral financial theory to further explain our findings, and to propose a trading model to verify the proposed model.
  4. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.02
    0.015656754 = product of:
      0.03131351 = sum of:
        0.0122329 = product of:
          0.0489316 = sum of:
            0.0489316 = weight(_text_:based in 1521) [ClassicSimilarity], result of:
              0.0489316 = score(doc=1521,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.34595144 = fieldWeight in 1521, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.25 = coord(1/4)
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.038161222 = score(doc=1521,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
  5. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.01
    0.009880973 = product of:
      0.039523892 = sum of:
        0.039523892 = product of:
          0.079047784 = sum of:
            0.079047784 = weight(_text_:assessment in 4445) [ClassicSimilarity], result of:
              0.079047784 = score(doc=4445,freq=2.0), product of:
                0.25917634 = queryWeight, product of:
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30499613 = fieldWeight in 4445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.52102 = idf(docFreq=480, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4445)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Citations in scientific literature are important both for tracking the historical development of scientific ideas and for forecasting research trends. However, the diffusion mechanisms underlying the citation process remain poorly understood, despite the frequent and longstanding use of citation counts for assessment purposes within the scientific community. Here, we extend the study of citation dynamics to a more general diffusion process to understand how citation growth associates with different diffusion patterns. Using a classic diffusion model, we quantify and illustrate specific diffusion mechanisms which have been proven to exert a significant impact on the growth and decay of citation counts. Experiments reveal a positive relation between the "low p and low q" pattern and high scientific impact. A sharp citation peak produced by rapid change of citation counts, however, has a negative effect on future impact. In addition, we have suggested a simple indicator, saturation level, to roughly estimate an individual article's current stage in the life cycle and its potential to attract future attention. The proposed approach can also be extended to higher levels of aggregation (e.g., individual scientists, journals, institutions), providing further insights into the practice of scientific evaluation.
  6. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.01
    0.0055651786 = product of:
      0.022260714 = sum of:
        0.022260714 = product of:
          0.04452143 = sum of:
            0.04452143 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.04452143 = score(doc=4188,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2011 13:02:21
  7. Li, D.; Luo, Z.; Ding, Y.; Tang, J.; Sun, G.G.-Z.; Dai, X.; Du, J.; Zhang, J.; Kong, S.: User-level microblogging recommendation incorporating social influence (2017) 0.00
    0.002548521 = product of:
      0.010194084 = sum of:
        0.010194084 = product of:
          0.040776335 = sum of:
            0.040776335 = weight(_text_:based in 3426) [ClassicSimilarity], result of:
              0.040776335 = score(doc=3426,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28829288 = fieldWeight in 3426, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3426)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    With the information overload of user-generated content in microblogging, users find it extremely challenging to browse and find valuable information in their first attempt. In this paper we propose a microblogging recommendation algorithm, TSI-MR (Topic-Level Social Influence-based Microblogging Recommendation), which can significantly improve users' microblogging experiences. The main innovation of this proposed algorithm is that we consider social influences and their indirect structural relationships, which are largely based on social status theory, from the topic level. The primary advantage of this approach is that it can build an accurate description of latent relationships between two users with weak connections, which can improve the performance of the model; furthermore, it can solve sparsity problems of training data to a certain extent. The realization of the model is mainly based on Factor Graph. We also applied a distributed strategy to further improve the efficiency of the model. Finally, we use data from Tencent Weibo, one of the most popular microblogging services in China, to evaluate our methods. The results show that incorporating social influence can improve microblogging performance considerably, and outperform the baseline methods.
  8. Ding, Y.; Chowdhury, G.; Foo, S.: Organsising keywords in a Web search environment : a methodology based on co-word analysis (2000) 0.00
    0.0024970302 = product of:
      0.009988121 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 105) [ClassicSimilarity], result of:
              0.039952483 = score(doc=105,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 105, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=105)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    The rapid development of the Internet and World Wide Web has caused some critical problem for information retrieval. Researchers have made several attempts to solve these problems. Thesauri and subject heading lists as traditional information retrieval tools have been criticised for their efficiency to tackle these newly emerging problems. This paper proposes an information retrieval tool generated by cocitation analysis, comprising keyword clusters with relationships based on the co-occurrences of keywords in the literature. Such a tool can play the role of an associative thesaurus that can provide information about the keywords in a domain that might be useful for information searching and query expansion
  9. Ding, Y.: Topic-based PageRank on author cocitation networks (2011) 0.00
    0.0024970302 = product of:
      0.009988121 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 4348) [ClassicSimilarity], result of:
              0.039952483 = score(doc=4348,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 4348, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4348)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Ranking authors is vital for identifying a researcher's impact and standing within a scientific field. There are many different ranking methods (e.g., citations, publications, h-index, PageRank, and weighted PageRank), but most of them are topic-independent. This paper proposes topic-dependent ranks based on the combination of a topic model and a weighted PageRank algorithm. The author-conference-topic (ACT) model was used to extract topic distribution of individual authors. Two ways for combining the ACT model with the PageRank algorithm are proposed: simple combination (I_PR) or using a topic distribution as a weighted vector for PageRank (PR_t). Information retrieval was chosen as the test field and representative authors for different topics at different time phases were identified. Principal component analysis (PCA) was applied to analyze the ranking difference between I_PR and PR_t.
  10. Ding, Y.; Yan, E.: Scholarly network similarities : how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other (2012) 0.00
    0.0024970302 = product of:
      0.009988121 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 274) [ClassicSimilarity], result of:
              0.039952483 = score(doc=274,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 274, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=274)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This study explores the similarity among six types of scholarly networks aggregated at the institution level, including bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks. Cosine distance is chosen to measure the similarities among the six networks. The authors found that topical networks and coauthorship networks have the lowest similarity; cocitation networks and citation networks have high similarity; bibliographic coupling networks and cocitation networks have high similarity; and coword networks and topical networks have high similarity. In addition, through multidimensional scaling, two dimensions can be identified among the six networks: Dimension 1 can be interpreted as citation-based versus noncitation-based, and Dimension 2 can be interpreted as social versus cognitive. The authors recommend the use of hybrid or heterogeneous networks to study research interaction and scholarly communications.
  11. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.00
    0.0024970302 = product of:
      0.009988121 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 1202) [ClassicSimilarity], result of:
              0.039952483 = score(doc=1202,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 1202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Bioinformatics is a fast-growing field based on the optimal use of "big data" gathered in genomic, proteomics, and functional genomics research. In this paper, we conduct a comprehensive and in-depth bibliometric analysis of the field of bioinformatics by extracting citation data from PubMed Central full-text. Citation data for the period 2000 to 2011, comprising 20,869 papers with 546,245 citations, was used to evaluate the productivity and influence of this emerging field. Four measures were used to identify productivity; most productive authors, most productive countries, most productive organizations, and most popular subject terms. Research impact was analyzed based on the measures of most cited papers, most cited authors, emerging stars, and leading organizations. Results show the overall trends between the periods 2000 to 2003 and 2004 to 2007 were dissimilar, while trends between the periods 2004 to 2007 and 2008 to 2011 were similar. In addition, the field of bioinformatics has undergone a significant shift, co-evolving with other biomedical disciplines.
  12. Milojevic, S.; Sugimoto, C.R.; Yan, E.; Ding, Y.: ¬The cognitive structure of Library and Information Science : analysis of article title words (2011) 0.00
    0.0020808585 = product of:
      0.008323434 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 4608) [ClassicSimilarity], result of:
              0.033293735 = score(doc=4608,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 4608, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4608)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This study comprises a suite of analyses of words in article titles in order to reveal the cognitive structure of Library and Information Science (LIS). The use of title words to elucidate the cognitive structure of LIS has been relatively neglected. The present study addresses this gap by performing (a) co-word analysis and hierarchical clustering, (b) multidimensional scaling, and (c) determination of trends in usage of terms. The study is based on 10,344 articles published between 1988 and 2007 in 16 LIS journals. Methodologically, novel aspects of this study are: (a) its large scale, (b) removal of non-specific title words based on the "word concentration" measure (c) identification of the most frequent terms that include both single words and phrases, and (d) presentation of the relative frequencies of terms using "heatmaps". Conceptually, our analysis reveals that LIS consists of three main branches: the traditionally recognized library-related and information-related branches, plus an equally distinct bibliometrics/scientometrics branch. The three branches focus on: libraries, information, and science, respectively. In addition, our study identifies substructures within each branch. We also tentatively identify "information seeking behavior" as a branch that is establishing itself separate from the three main branches. Furthermore, we find that cognitive concepts in LIS evolve continuously, with no stasis since 1992. The most rapid development occurred between 1998 and 2001, influenced by the increased focus on the Internet. The change in the cognitive landscape is found to be driven by the emergence of new information technologies, and the retirement of old ones.
  13. Tan, L.K.-W.; Na, J.-C.; Ding, Y.: Influence diffusion detection using the influence style (INFUSE) model (2015) 0.00
    0.0020808585 = product of:
      0.008323434 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 2125) [ClassicSimilarity], result of:
              0.033293735 = score(doc=2125,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 2125, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2125)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Blogs are readily available sources of opinions and sentiments that in turn could influence the opinions of the blog readers. Previous studies have attempted to infer influence from blog features, but they have ignored the possible influence styles that describe the different ways in which influence is exerted. We propose a novel approach to analyzing bloggers' influence styles and using the influence styles as features to improve the performance of influence diffusion detection among linked bloggers. The proposed influence style (INFUSE) model describes bloggers' influence through their engagement style, persuasion style, and persona. Methods used include similarity analysis to detect the creating-sharing aspect of engagement style, subjectivity analysis to measure persuasion style, and sentiment analysis to identify persona style. We further extend the INFUSE model to detect influence diffusion among linked bloggers based on the bloggers' influence styles. The INFUSE model performed well with an average F1 score of 76% compared with the in-degree and sentiment-value baseline approaches. Previous studies have focused on the existence of influence among linked bloggers in detecting influence diffusion, but our INFUSE model is shown to provide a fine-grained description of the manner in which influence is diffused based on the bloggers' influence styles.
  14. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 3161) [ClassicSimilarity], result of:
              0.028250674 = score(doc=3161,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 3161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3161)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
  15. Ding, Y.; Jacob, E.K.; Zhang, Z.; Foo, S.; Yan, E.; George, N.L.; Guo, L.: Perspectives on social tagging (2009) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 3290) [ClassicSimilarity], result of:
              0.028250674 = score(doc=3290,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 3290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3290)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Social tagging is one of the major phenomena transforming the World Wide Web from a static platform into an actively shared information space. This paper addresses various aspects of social tagging, including different views on the nature of social tagging, how to make use of social tags, and how to bridge social tagging with other Web functionalities; it discusses the use of facets to facilitate browsing and searching of tagging data; and it presents an analogy between bibliometrics and tagometrics, arguing that established bibliometric methodologies can be applied to analyze tagging behavior on the Web. Based on the Upper Tag Ontology (UTO), a Web crawler was built to harvest tag data from Delicious, Flickr, and YouTube in September 2007. In total, 1.8 million objects, including bookmarks, photos, and videos, 3.1 million taggers, and 12.1 million tags were collected and analyzed. Some tagging patterns and variations are identified and discussed.
  16. Yan, E.; Ding, Y.; Sugimoto, C.R.: P-Rank: an indicator measuring prestige in heterogeneous scholarly networks (2011) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 4349) [ClassicSimilarity], result of:
              0.028250674 = score(doc=4349,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 4349, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4349)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Ranking scientific productivity and prestige are often limited to homogeneous networks. These networks are unable to account for the multiple factors that constitute the scholarly communication and reward system. This study proposes a new informetric indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks containing articles, authors, and journals. P-Rank differentiates the weight of each citation based on its citing papers, citing journals, and citing authors. Articles from 16 representative library and information science journals are selected as the dataset. Principle Component Analysis is conducted to examine the relationship between P-Rank and other bibliometric indicators. We also compare the correlation and rank variances between citation counts and P-Rank scores. This work provides a new approach to examining prestige in scholarly communication networks in a more comprehensive and nuanced way.
  17. Zhang, G.; Ding, Y.; Milojevic, S.: Citation content analysis (CCA) : a framework for syntactic and semantic analysis of citation content (2013) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 975) [ClassicSimilarity], result of:
              0.028250674 = score(doc=975,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 975, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=975)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This study proposes a new framework for citation content analysis (CCA), for syntactic and semantic analysis of citation content that can be used to better analyze the rich sociocultural context of research behavior. This framework could be considered the next generation of citation analysis. The authors briefly review the history and features of content analysis in traditional social sciences and its previous application in library and information science (LIS). Based on critical discussion of the theoretical necessity of a new method as well as the limits of citation analysis, the nature and purposes of CCA are discussed, and potential procedures to conduct CCA, including principles to identify the reference scope, a two-dimensional (citing and cited) and two-module (syntactic and semantic) codebook, are provided and described. Future work and implications are also suggested.
  18. Hu, B.; Dong, X.; Zhang, C.; Bowman, T.D.; Ding, Y.; Milojevic, S.; Ni, C.; Yan, E.; Larivière, V.: ¬A lead-lag analysis of the topic evolution patterns for preprints and publications (2015) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 2337) [ClassicSimilarity], result of:
              0.028250674 = score(doc=2337,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 2337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2337)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    This study applied LDA (latent Dirichlet allocation) and regression analysis to conduct a lead-lag analysis to identify different topic evolution patterns between preprints and papers from arXiv and the Web of Science (WoS) in astrophysics over the last 20 years (1992-2011). Fifty topics in arXiv and WoS were generated using an LDA algorithm and then regression models were used to explain 4 types of topic growth patterns. Based on the slopes of the fitted equation curves, the paper redefines the topic trends and popularity. Results show that arXiv and WoS share similar topics in a given domain, but differ in evolution trends. Topics in WoS lose their popularity much earlier and their durations of popularity are shorter than those in arXiv. This work demonstrates that open access preprints have stronger growth tendency as compared to traditional printed publications.
  19. Zhai, Y; Ding, Y.; Wang, F.: Measuring the diffusion of an innovation : a citation analysis (2018) 0.00
    0.0017656671 = product of:
      0.0070626684 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 4116) [ClassicSimilarity], result of:
              0.028250674 = score(doc=4116,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 4116, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4116)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    Innovations transform our research traditions and become the driving force to advance individual, group, and social creativity. Meanwhile, interdisciplinary research is increasingly being promoted as a route to advance the complex challenges we face as a society. In this paper, we use Latent Dirichlet Allocation (LDA) citation as a proxy context for the diffusion of an innovation. With an analysis of topic evolution, we divide the diffusion process into five stages: testing and evaluation, implementation, improvement, extending, and fading. Through a correlation analysis of topic and subject, we show the application of LDA in different subjects. We also reveal the cross-boundary diffusion between different subjects based on the analysis of the interdisciplinary studies. The results show that as LDA is transferred into different areas, the adoption of each subject is relatively adjacent to those with similar research interests. Our findings further support researchers' understanding of the impact formation of innovation.