Search (72 results, page 1 of 4)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.05
    0.046948045 = product of:
      0.062597394 = sum of:
        0.0047084456 = product of:
          0.018833783 = sum of:
            0.018833783 = weight(_text_:based in 2763) [ClassicSimilarity], result of:
              0.018833783 = score(doc=2763,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.13315678 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.25 = coord(1/4)
        0.04516854 = weight(_text_:term in 2763) [ClassicSimilarity], result of:
          0.04516854 = score(doc=2763,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.20621133 = fieldWeight in 2763, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.03125 = fieldNorm(doc=2763)
        0.012720408 = product of:
          0.025440816 = sum of:
            0.025440816 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.025440816 = score(doc=2763,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.15476047 = fieldWeight in 2763, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
  2. Zhonghong, W.; Chaudhry, A.S.; Khoo, C.: Potential and prospects of taxonomies for content organization (2006) 0.04
    0.043642364 = product of:
      0.08728473 = sum of:
        0.00823978 = product of:
          0.03295912 = sum of:
            0.03295912 = weight(_text_:based in 169) [ClassicSimilarity], result of:
              0.03295912 = score(doc=169,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23302436 = fieldWeight in 169, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=169)
          0.25 = coord(1/4)
        0.079044946 = weight(_text_:term in 169) [ClassicSimilarity], result of:
          0.079044946 = score(doc=169,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.36086982 = fieldWeight in 169, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=169)
      0.5 = coord(2/4)
    
    Abstract
    While taxonomies are being increasingly discussed in published and grey literature, the term taxonomy still seems to be stated quite loosely and obscurely. This paper aims at explaining and clarifying the concept of taxonomy in the context of information organization. To this end, the salient features of taxonomies are identified and their scope, nature, and role are further elaborated based on an extensive literature review. In the meantime, the connection and distinctions between taxonomies and classification schemes and thesauri are also identified, and the rationale that taxonomies are chosen as a viable knowledge organization system used in organization-wide websites to support browsing and aid navigation is clarified.
  3. Wang, Z.; Chaudhry, A.S.; Khoo, C.S.G.: Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation (2008) 0.03
    0.028944474 = product of:
      0.057888947 = sum of:
        0.04516854 = weight(_text_:term in 2346) [ClassicSimilarity], result of:
          0.04516854 = score(doc=2346,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.20621133 = fieldWeight in 2346, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.03125 = fieldNorm(doc=2346)
        0.012720408 = product of:
          0.025440816 = sum of:
            0.025440816 = weight(_text_:22 in 2346) [ClassicSimilarity], result of:
              0.025440816 = score(doc=2346,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.15476047 = fieldWeight in 2346, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2346)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - Potential and benefits of classification schemes and thesauri in building organizational taxonomies cannot be fully utilized by organizations. Empirical data of building an organizational taxonomy by the top-down approach of using classification schemes and thesauri appear to be lacking. The paper seeks to make a contribution in this regard. Design/methodology/approach - A case study of building an organizational taxonomy was conducted in the information studies domain for the Division of Information Studies at Nanyang Technology University, Singapore. The taxonomy was built by using the Dewey Decimal Classification, the Information Science Taxonomy, two information systems taxonomies, and three thesauri (ASIS&T, LISA, and ERIC). Findings - Classification schemes and thesauri were found to be helpful in creating the structure and categories related to the subject facet of the taxonomy, but organizational community sources had to be consulted and several methods had to be employed. The organizational activities and stakeholders' needs had to be identified to determine the objectives, facets, and the subject coverage of the taxonomy. Main categories were determined by identifying the stakeholders' interests and consulting organizational community sources and domain taxonomies. Category terms were selected from terminologies of classification schemes, domain taxonomies, and thesauri against the stakeholders' interests. Hierarchical structures of the main categories were constructed in line with the stakeholders' perspectives and the navigational role taking advantage of structures/term relationships from classification schemes and thesauri. Categories were determined in line with the concepts and the hierarchical levels. Format of categories were uniformed according to a commonly used standard. The consistency principle was employed to make the taxonomy structure and categories neater. Validation of the draft taxonomy through consultations with the stakeholders further refined the taxonomy. Originality/value - No similar study could be traced in the literature. The steps and methods used in the taxonomy development, and the information studies taxonomy itself, will be helpful for library and information schools and other similar organizations in their effort to develop taxonomies for organizing content and aiding navigation on organizational sites.
    Date
    7.11.2008 15:22:04
  4. Hjoerland, B.: Classification (2017) 0.02
    0.02258427 = product of:
      0.09033708 = sum of:
        0.09033708 = weight(_text_:term in 3610) [ClassicSimilarity], result of:
          0.09033708 = score(doc=3610,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.41242266 = fieldWeight in 3610, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0625 = fieldNorm(doc=3610)
      0.25 = coord(1/4)
    
    Abstract
    This article presents and discusses definitions of the term "classification" and the related concepts "Concept/conceptualization," "categorization," "ordering," "taxonomy" and "typology." It further presents and discusses theories of classification including the influences of Aristotle and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly presented and discussed.
  5. Broughton, V.: Essential classification (2004) 0.02
    0.021597369 = product of:
      0.043194737 = sum of:
        0.0040776334 = product of:
          0.016310534 = sum of:
            0.016310534 = weight(_text_:based in 2824) [ClassicSimilarity], result of:
              0.016310534 = score(doc=2824,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.11531715 = fieldWeight in 2824, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.25 = coord(1/4)
        0.039117105 = weight(_text_:term in 2824) [ClassicSimilarity], result of:
          0.039117105 = score(doc=2824,freq=6.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.17858426 = fieldWeight in 2824, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
      0.5 = coord(2/4)
    
    Footnote
    Rez. in: KO 32(2005) no.1, S.47-49 (M. Hudon): "Vanda Broughton's Essential Classification is the most recent addition to a very small set of classification textbooks published over the past few years. The book's 21 chapters are based very closely an the cataloguing and classification module at the School of Library, Archive, and Information studies at University College, London. The author's main objective is clear: this is "first and foremost a book about how to classify. The emphasis throughout is an the activity of classification rather than the theory, the practical problems of the organization of collections, and the needs of the users" (p. 1). This is not a theoretical work, but a basic course in classification and classification scheme application. For this reviewer, who also teaches "Classification 101," this is also a fascinating peek into how a colleague organizes content and structures her course. "Classification is everywhere" (p. 1): the first sentence of this book is also one of the first statements in my own course, and Professor Broughton's metaphors - the supermarket, canned peas, flowers, etc. - are those that are used by our colleagues around the world. The combination of tone, writing style and content display are reader-friendly; they are in fact what make this book remarkable and what distinguishes it from more "formal" textbooks, such as The Organization of Information, the superb text written and recently updated (2004) by Professor Arlene Taylor (2nd ed. Westport, Conn.: Libraries Unlimited, 2004). Reading Essential Classification, at times, feels like being in a classroom, facing a teacher who assures you that "you don't need to worry about this at this stage" (p. 104), and reassures you that, although you now speed a long time looking for things, "you will soon speed up when you get to know the scheme better" (p. 137). This teacher uses redundancy in a productive fashion, and she is not afraid to express her own opinions ("I think that if these concepts are helpful they may be used" (p. 245); "It's annoying that LCC doesn't provide clearer instructions, but if you keep your head and take them one step at a time [i.e. the tables] they're fairly straightforward" (p. 174)). Chapters 1 to 7 present the essential theoretical concepts relating to knowledge organization and to bibliographic classification. The author is adept at making and explaining distinctions: known-item retrieval versus subject retrieval, personal versus public/shared/official classification systems, scientific versus folk classification systems, object versus aspect classification systems, semantic versus syntactic relationships, and so on. Chapters 8 and 9 discuss the practice of classification, through content analysis and subject description. A short discussion of difficult subjects, namely the treatment of unique concepts (persons, places, etc.) as subjects seems a little advanced for a beginners' class.
    In Chapter 10, "Controlled indexing languages," Professor Broughton states that a classification scheme is truly a language "since it permits communication and the exchange of information" (p. 89), a Statement with which this reviewer wholly agrees. Chapter 11, however, "Word-based approaches to retrieval," moves us to a different field altogether, offering only a narrow view of the whole world of controlled indexing languages such as thesauri, and presenting disconnected discussions of alphabetical filing, form and structure of subject headings, modern developments in alphabetical subject indexing, etc. Chapters 12 and 13 focus an the Library of Congress Subject Headings (LCSH), without even a passing reference to existing subject headings lists in other languages (French RAMEAU, German SWK, etc.). If it is not surprising to see a section on subject headings in a book on classification, the two subjects being taught together in most library schools, the location of this section in the middle of this particular book is more difficult to understand. Chapter 14 brings the reader back to classification, for a discussion of essentials of classification scheme application. The following five chapters present in turn each one of the three major and currently used bibliographic classification schemes, in order of increasing complexity and difficulty of application. The Library of Congress Classification (LCC), the easiest to use, is covered in chapters 15 and 16. The Dewey Decimal Classification (DDC) deserves only a one-chapter treatment (Chapter 17), while the functionalities of the Universal Decimal Classification (UDC), which Professor Broughton knows extremely well, are described in chapters 18 and 19. Chapter 20 is a general discussion of faceted classification, on par with the first seven chapters for its theoretical content. Chapter 21, an interesting last chapter on managing classification, addresses down-to-earth matters such as the cost of classification, the need for re-classification, advantages and disadvantages of using print versions or e-versions of classification schemes, choice of classification scheme, general versus special scheme. But although the questions are interesting, the chapter provides only a very general overview of what appropriate answers might be. To facilitate reading and learning, summaries are strategically located at various places in the text, and always before switching to a related subject. Professor Broughton's choice of examples is always interesting, and sometimes even entertaining (see for example "Inside out: A brief history of underwear" (p. 71)). With many examples, however, and particularly those that appear in the five chapters an classification scheme applications, the novice reader would have benefited from more detailed explanations. On page 221, for example, "The history and social influence of the potato" results in this analysis of concepts: Potato - Sociology, and in the UDC class number: 635.21:316. What happened to the "history" aspect? Some examples are not very convincing: in Animals RT Reproduction and Art RT Reproduction (p. 102), the associative relationship is not appropriate as it is used to distinguish homographs and would do nothing to help either the indexer or the user at the retrieval stage.
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."
  6. Classification research for knowledge representation and organization : Proc. of the 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991 (1992) 0.02
    0.019996427 = product of:
      0.039992854 = sum of:
        0.00611645 = product of:
          0.0244658 = sum of:
            0.0244658 = weight(_text_:based in 2072) [ClassicSimilarity], result of:
              0.0244658 = score(doc=2072,freq=6.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.17297572 = fieldWeight in 2072, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2072)
          0.25 = coord(1/4)
        0.033876404 = weight(_text_:term in 2072) [ClassicSimilarity], result of:
          0.033876404 = score(doc=2072,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.1546585 = fieldWeight in 2072, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
      0.5 = coord(2/4)
    
    Content
    Enthält die Beiträge: SVENONIUS, E.: Classification: prospects, problems, and possibilities; BEALL, J.: Editing the Dewey Decimal Classification online: the evolution of the DDC database; BEGHTOL, C.: Toward a theory of fiction analysis for information storage and retrieval; CRAVEN, T.C.: Concept relation structures and their graphic display; FUGMANN, R.: Illusory goals in information science research; GILCHRIST, A.: UDC: the 1990's and beyond; GREEN, R.: The expression of syntagmatic relationships in indexing: are frame-based index languages the answer?; HUMPHREY, S.M.: Use and management of classification systems for knowledge-based indexing; MIKSA, F.L.: The concept of the universe of knowledge and the purpose of LIS classification; SCOTT, M. u. A.F. FONSECA: Methodology for functional appraisal of records and creation of a functional thesaurus; ALBRECHTSEN, H.: PRESS: a thesaurus-based information system for software reuse; AMAESHI, B.: A preliminary AAT compatible African art thesaurus; CHATTERJEE, A.: Structures of Indian classification systems of the pre-Ranganathan era and their impact on the Colon Classification; COCHRANE, P.A.: Indexing and searching thesauri, the Janus or Proteus of information retrieval; CRAVEN, T.C.: A general versus a special algorithm in the graphic display of thesauri; DAHLBERG, I.: The basis of a new universal classification system seen from a philosophy of science point of view: DRABENSTOTT, K.M., RIESTER, L.C. u. B.A.DEDE: Shelflisting using expert systems; FIDEL, R.: Thesaurus requirements for an intermediary expert system; GREEN, R.: Insights into classification from the cognitive sciences: ramifications for index languages; GROLIER, E. de: Towards a syndetic information retrieval system; GUENTHER, R.: The USMARC format for classification data: development and implementation; HOWARTH, L.C.: Factors influencing policies for the adoption and integration of revisions to classification schedules; HUDON, M.: Term definitions in subject thesauri: the Canadian literacy thesaurus experience; HUSAIN, S.: Notational techniques for the accomodation of subjects in Colon Classification 7th edition: theoretical possibility vis-à-vis practical need; KWASNIK, B.H. u. C. JORGERSEN: The exploration by means of repertory grids of semantic differences among names of official documents; MICCO, M.: Suggestions for automating the Library of Congress Classification schedules; PERREAULT, J.M.: An essay on the prehistory of general categories (II): G.W. Leibniz, Conrad Gesner; REES-POTTER, L.K.: How well do thesauri serve the social sciences?; REVIE, C.W. u. G. SMART: The construction and the use of faceted classification schema in technical domains; ROCKMORE, M.: Structuring a flexible faceted thsaurus record for corporate information retrieval; ROULIN, C.: Sub-thesauri as part of a metathesaurus; SMITH, L.C.: UNISIST revisited: compatibility in the context of collaboratories; STILES, W.G.: Notes concerning the use chain indexing as a possible means of simulating the inductive leap within artificial intelligence; SVENONIUS, E., LIU, S. u. B. SUBRAHMANYAM: Automation in chain indexing; TURNER, J.: Structure in data in the Stockshot database at the National Film Board of Canada; VIZINE-GOETZ, D.: The Dewey Decimal Classification as an online classification tool; WILLIAMSON, N.J.: Restructuring UDC: problems and possibilies; WILSON, A.: The hierarchy of belief: ideological tendentiousness in universal classification; WILSON, B.F.: An evaluation of the systematic botany schedule of the Universal Decimal Classification (English full edition, 1979); ZENG, L.: Research and development of classification and thesauri in China; CONFERENCE SUMMARY AND CONCLUSIONS
  7. Beghtol, C.: Response to Hjoerland and Nicolaisen (2004) 0.02
    0.019761236 = product of:
      0.079044946 = sum of:
        0.079044946 = weight(_text_:term in 3536) [ClassicSimilarity], result of:
          0.079044946 = score(doc=3536,freq=8.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.36086982 = fieldWeight in 3536, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3536)
      0.25 = coord(1/4)
    
    Abstract
    I am writing to correct some of the misconceptions that Hjoerland and Nicolaisen appear to have about my paper in the previous issue of Knowledge Organization. I would like to address aspects of two of these misapprehensions. The first is the faulty interpretation they have given to my use of the term "naïve classification," and the second is the kinds of classification systems that they appear to believe are discussed in my paper as examples of "naïve classifications." First, the term "naïve classification" is directly analogous to the widely-understood and widelyaccepted term "naïve indexing." It is not analogous to the terms to which Hjorland and Nicolaisen compare it (i.e., "naïve physics", "naïve biology"). The term as I have defined it is not pejorative. It does not imply that the scholars who have developed naïve classifications have not given profoundly serious thought to their own scholarly work. My paper distinguishes between classifications for new knowledge developed by scholars in the various disciplines for the purposes of advancing disciplinary knowledge ("naïve classifications") and classifications for previously existing knowledge developed by information professionals for the purposes of creating access points in information retrieval systems ("professional classifications"). This distinction rests primarily an the purpose of the kind of classification system in question and only secondarily an the knowledge base of the scholars who have created it. Hjoerland and Nicolaisen appear to have misunderstood this point, which is made clearly and adequately in the title, in the abstract and throughout the text of my paper.
  8. Belayche, C.: ¬A propos de la classification de Dewey (1997) 0.02
    0.019379156 = product of:
      0.03875831 = sum of:
        0.013317495 = product of:
          0.05326998 = sum of:
            0.05326998 = weight(_text_:based in 1171) [ClassicSimilarity], result of:
              0.05326998 = score(doc=1171,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.37662423 = fieldWeight in 1171, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1171)
          0.25 = coord(1/4)
        0.025440816 = product of:
          0.05088163 = sum of:
            0.05088163 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.05088163 = score(doc=1171,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30952093 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    All classifications are based on ideologies and Dewey is marked by its author's origins in 19th century North America. Subsequent revisions indicate changed ways of understanding the world. Section 157 (psycho-pathology) is now included with 616.89 (mental troubles), reflecting the move to a genetic-based approach. Table 5 (racial, ethnic and national groups) is however unchanged, despite changing views on such categorisation
    Source
    Bulletin d'informations de l'Association des Bibliothecaires Francais. 1997, no.175, S.22-23
  9. Classification Research Group: ¬The need for a faceted classification as the basis of all methods of information retrieval (1985) 0.02
    0.018703869 = product of:
      0.037407737 = sum of:
        0.0035313342 = product of:
          0.014125337 = sum of:
            0.014125337 = weight(_text_:based in 3640) [ClassicSimilarity], result of:
              0.014125337 = score(doc=3640,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.09986758 = fieldWeight in 3640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3640)
          0.25 = coord(1/4)
        0.033876404 = weight(_text_:term in 3640) [ClassicSimilarity], result of:
          0.033876404 = score(doc=3640,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.1546585 = fieldWeight in 3640, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3640)
      0.5 = coord(2/4)
    
    Abstract
    The technique chosen was S. R. Ranganathan's facet analysis (q.v.). This method works from the bottom up: a term is categorized according to its parent class, as a kind, state, property, action, operation upon something, result of an Operation, agent, and so on. These modes of definition represent characteristics of division. Following the publication of this paper, the group worked for over ten years developing systems following this general pattern with various changes and experimental arrangements. Ranganathan's Colon Classification was the original of this type of method, but the Group rejected his contention that there are only five fundamental categories to be found in the knowledge base. They did, in fact, end up with varying numbers of categories in the experimental systems which they ultimately were to make. Notation was also recognized as a problem, being complex, illogical, lengthy, obscure and hard to understand. The Group tried to develop a rationale for notation, both as an ordering and as a finding device. To describe and represent a class, a notation could be long, but as a finding device, brevity would be preferable. The Group was to experiment with this aspect of classification and produce a number of interesting results. The Classification Research Group began meeting informally to discuss classification matters in 1952 and continues to meet, usually in London, to the present day. Most of the British authors whose work is presented in these pages have been members for most of the Group's life and continue in it. The Group maintains the basic position outlined in this paper to the present day. Its experimental approach has resulted in much more information about the nature and functions of classification systems. The ideal system has yet to be found. Classification research is still a promising area. The future calls for more experimentation based an reasoned approaches, following the example set by the Classification Research Group.
  10. Bergman, M.K..: Hierarchy in knowledge systems (2022) 0.01
    0.014115169 = product of:
      0.056460675 = sum of:
        0.056460675 = weight(_text_:term in 1099) [ClassicSimilarity], result of:
          0.056460675 = score(doc=1099,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.25776416 = fieldWeight in 1099, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1099)
      0.25 = coord(1/4)
    
    Abstract
    Hierarchies abound to help us organize our world. A hierarchy places items into a general order, where more 'general' is also more 'abstract'. The etymology of hierarchy is grounded in notions of religious and social rank. This article, after a historical review, focuses on knowledge systems, an interloper of the term hierarchy since at least the 1800s. Hierarchies in knowledge systems include taxonomies, classification systems, or thesauri in information science, and systems for representing information and knowledge to computers, notably ontologies and knowledge representation languages. Hierarchies are the logical underpinning of inference and reasoning in these systems, as well as the scaffolding for classification and inheritance. Hierarchies in knowledge systems express subsumption relations that have flexible variants, which we can represent algorithmically, and thus computationally. This article dissects that variability, leading to a proposed typology of hierarchies useful to knowledge systems. The article argues through a perspective informed by Charles Peirce that natural hierarchies are real, can be logically determined, and are the appropriate basis for knowledge systems. Description logics and semantic language standards reflect this perspective, importantly through their open-world logic and vocabularies for generalized subsumption hierarchies. Recent research suggests possible mechanisms for the emergence of natural hierarchies.
  11. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.01
    0.013071639 = product of:
      0.026143279 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 2945) [ClassicSimilarity], result of:
              0.028250674 = score(doc=2945,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.25 = coord(1/4)
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
              0.038161222 = score(doc=2945,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 2945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2945)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  12. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.01
    0.013071639 = product of:
      0.026143279 = sum of:
        0.0070626684 = product of:
          0.028250674 = sum of:
            0.028250674 = weight(_text_:based in 4152) [ClassicSimilarity], result of:
              0.028250674 = score(doc=4152,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19973516 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.25 = coord(1/4)
        0.019080611 = product of:
          0.038161222 = sum of:
            0.038161222 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.038161222 = score(doc=4152,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This is the fourth in a series of papers on classification based on phenomena instead of disciplines. Together with types, levels and facets that have been discussed in the previous parts, themes and rhemes are further structural components of such a classification. In a statement or in a longer document, a base theme and several particular themes can be identified. Base theme should be cited first in a classmark, followed by particular themes, each with its own facets. In some cases, rhemes can also be expressed, that is new information provided about a theme, converting an abstract statement ("wolves, affected by cervids") into a claim that some thing actually occurs ("wolves are affected by cervids"). In the Integrative Levels Classification rhemes can be expressed by special deictic classes, including those for actual specimens, anaphoras, unknown values, conjunctions and spans, whole universe, anthropocentric favoured classes, and favoured host classes. These features, together with rules for pronounciation, make a classification of phenomena a true language, that may be suitable for many uses.
    Date
    17. 2.2018 18:22:25
  13. Molholt, P.: Qualities of classification schemes for the Information Superhighway (1995) 0.01
    0.012111973 = product of:
      0.024223946 = sum of:
        0.008323434 = product of:
          0.033293735 = sum of:
            0.033293735 = weight(_text_:based in 5562) [ClassicSimilarity], result of:
              0.033293735 = score(doc=5562,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.23539014 = fieldWeight in 5562, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5562)
          0.25 = coord(1/4)
        0.015900511 = product of:
          0.031801023 = sum of:
            0.031801023 = weight(_text_:22 in 5562) [ClassicSimilarity], result of:
              0.031801023 = score(doc=5562,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.19345059 = fieldWeight in 5562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5562)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    For my segment of this program I'd like to focus on some basic qualities of classification schemes. These qualities are critical to our ability to truly organize knowledge for access. As I see it, there are at least five qualities of note. The first one of these properties that I want to talk about is "authoritative." By this I mean standardized, but I mean more than standardized with a built in consensus-building process. A classification scheme constructed by a collaborative, consensus-building process carries the approval, and the authority, of the discipline groups that contribute to it and that it affects... The next property of classification systems is "expandable," living, responsive, with a clear locus of responsibility for its continuous upkeep. The worst thing you can do with a thesaurus, or a classification scheme, is to finish it. You can't ever finish it because it reflects ongoing intellectual activity... The third property is "intuitive." That is, the system has to be approachable, it has to be transparent, or at least capable of being transparent. It has to have an underlying logic that supports the classification scheme but doesn't dominate it... The fourth property is "organized and logical." I advocate very strongly, and agree with Lois Chan, that classification must be based on a rule-based structure, on somebody's world-view of the syndetic structure... The fifth property is "universal" by which I mean the classification scheme needs be useable by any specific system or application, and be available as a language for multiple purposes.
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.19-22
  14. Vickery, B.C.: Systematic subject indexing (1985) 0.01
    0.011292135 = product of:
      0.04516854 = sum of:
        0.04516854 = weight(_text_:term in 3636) [ClassicSimilarity], result of:
          0.04516854 = score(doc=3636,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.20621133 = fieldWeight in 3636, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.03125 = fieldNorm(doc=3636)
      0.25 = coord(1/4)
    
    Abstract
    - adding a relational term ("operator") to identify and join terms; - indicating grammatical case with terms where this would help clarify relationships; and - analyzing elementary terms to reveal fundamental categories where needed. He further added that a standard order for showing relational factors was highly desirable. Eventually, some years later, he was able to suggest such an order. This was accepted by his peers in the Classification Research Group, and utilized by Derek Austin in PRECIS (q.v.). Vickery began where Farradane began - with perception (a sound base according to current cognitive psychology). From this came further recognition of properties, parts, constituents, organs, effects, reactions, operations (physical and mental), added to the original "identity," "difference," "class membership," and "species." By defining categories more carefully, Vickery arrived at six (in addition to space (geographic) and time): - personality, thing, substance (e.g., dog, bicycle, rose) - part (e.g., paw, wheel, leaf) - substance (e.g., copper, water, butter) - action (e.g., scattering) - property (e.g., length, velocity) - operation (e.g., analysis, measurement) Thus, as early as 1953, the foundations were already laid for research that ultimately produced very sophisticated systems, such as PRECIS.
  15. Maniez, J.: ¬Des classifications aux thesaurus : du bon usage des facettes (1999) 0.01
    0.0095403055 = product of:
      0.038161222 = sum of:
        0.038161222 = product of:
          0.076322444 = sum of:
            0.076322444 = weight(_text_:22 in 6404) [ClassicSimilarity], result of:
              0.076322444 = score(doc=6404,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.46428138 = fieldWeight in 6404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6404)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    1. 8.1996 22:01:00
  16. Maniez, J.: ¬Du bon usage des facettes : des classifications aux thésaurus (1999) 0.01
    0.0095403055 = product of:
      0.038161222 = sum of:
        0.038161222 = product of:
          0.076322444 = sum of:
            0.076322444 = weight(_text_:22 in 3773) [ClassicSimilarity], result of:
              0.076322444 = score(doc=3773,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.46428138 = fieldWeight in 3773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3773)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    1. 8.1996 22:01:00
  17. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.01
    0.0095403055 = product of:
      0.038161222 = sum of:
        0.038161222 = product of:
          0.076322444 = sum of:
            0.076322444 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
              0.076322444 = score(doc=3176,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.46428138 = fieldWeight in 3176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3176)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    6. 5.2017 18:46:22
  18. Scerri, E.R.: ¬The periodic table : its story and its significance (2007) 0.01
    0.008469101 = product of:
      0.033876404 = sum of:
        0.033876404 = weight(_text_:term in 2492) [ClassicSimilarity], result of:
          0.033876404 = score(doc=2492,freq=2.0), product of:
            0.21904005 = queryWeight, product of:
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.04694356 = queryNorm
            0.1546585 = fieldWeight in 2492, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.66603 = idf(docFreq=1130, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2492)
      0.25 = coord(1/4)
    
    Abstract
    The periodic table is one of the most potent icons in science. It lies at the core of chemistry and embodies the most fundamental principles of the field. The one definitive text on the development of the periodic table by van Spronsen (1969), has been out of print for a considerable time. The present book provides a successor to van Spronsen, but goes further in giving an evaluation of the extent to which modern physics has, or has not, explained the periodic system. The book is written in a lively style to appeal to experts and interested lay-persons alike. The Periodic Table begins with an overview of the importance of the periodic table and of the elements and it examines the manner in which the term 'element' has been interpreted by chemists and philosophers. The book then turns to a systematic account of the early developments that led to the classification of the elements including the work of Lavoisier, Boyle and Dalton and Cannizzaro. The precursors to the periodic system, like Dobereiner and Gmelin, are discussed. In chapter 3 the discovery of the periodic system by six independent scientists is examined in detail. Two chapters are devoted to the discoveries of Mendeleev, the leading discoverer, including his predictions of new elements and his accommodation of already existing elements. Chapters 6 and 7 consider the impact of physics including the discoveries of radioactivity and isotopy and successive theories of the electron including Bohr's quantum theoretical approach. Chapter 8 discusses the response to the new physical theories by chemists such as Lewis and Bury who were able to draw on detailed chemical knowledge to correct some of the early electronic configurations published by Bohr and others. Chapter 9 provides a critical analysis of the extent to which modern quantum mechanics is, or is not, able to explain the periodic system from first principles. Finally, chapter 10 considers the way that the elements evolved following the Big Bang and in the interior of stars. The book closes with an examination of further chemical aspects including lesser known trends within the periodic system such as the knight's move relationship and secondary periodicity, as well at attempts to explain such trends.
  19. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.01
    0.006360204 = product of:
      0.025440816 = sum of:
        0.025440816 = product of:
          0.05088163 = sum of:
            0.05088163 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
              0.05088163 = score(doc=7242,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30952093 = fieldWeight in 7242, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7242)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 4.1997 21:10:19
  20. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.006360204 = product of:
      0.025440816 = sum of:
        0.025440816 = product of:
          0.05088163 = sum of:
            0.05088163 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.05088163 = score(doc=5083,freq=2.0), product of:
                0.16438834 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04694356 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    27. 5.2007 22:19:35

Years

Languages

  • e 66
  • f 3
  • chi 1
  • d 1
  • sp 1
  • More… Less…

Types

  • a 65
  • el 4
  • m 4
  • s 2
  • More… Less…