Search (11 results, page 1 of 1)

  • × author_ss:"Leydesdorff, L."
  1. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.05
    0.05328892 = product of:
      0.10657784 = sum of:
        0.10657784 = sum of:
          0.07197544 = weight(_text_:core in 3089) [ClassicSimilarity], result of:
            0.07197544 = score(doc=3089,freq=2.0), product of:
              0.25797358 = queryWeight, product of:
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.051078856 = queryNorm
              0.27900314 = fieldWeight in 3089, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
          0.0346024 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
            0.0346024 = score(doc=3089,freq=2.0), product of:
              0.17886946 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051078856 = queryNorm
              0.19345059 = fieldWeight in 3089, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
      0.5 = coord(1/2)
    
    Abstract
    Climate change as a complex physical and social issue has gained increasing attention in the natural as well as the social sciences. Climate change research has become more interdisciplinary and even transdisciplinary as a typical Mode-2 science that is also dependent on an application context for its further development. We propose to approach interdisciplinarity as a co-construction of the knowledge base in the reference patterns and the programmatic focus in the editorials in the core journal of the climate-change sciences-Climatic Change-during the period 1977-2013. First, we analyze the knowledge base of the journal and map journal-journal relations on the basis of the references in the articles. Second, we follow the development of the programmatic focus by analyzing the semantics in the editorials. We argue that interdisciplinarity is a result of the co-construction between different agendas: The selection of publications into the knowledge base of the journal, and the adjustment of the programmatic focus to the political context in the editorials. Our results show a widening of the knowledge base from referencing the multidisciplinary journals Nature and Science to citing journals from specialist fields. The programmatic focus follows policy-oriented issues and incorporates public metaphors.
    Date
    24. 8.2016 17:53:22
  2. Ye, F.Y.; Leydesdorff, L.: ¬The "academic trace" of the performance matrix : a mathematical synthesis of the h-index and the integrated impact indicator (I3) (2014) 0.03
    0.025447162 = product of:
      0.050894324 = sum of:
        0.050894324 = product of:
          0.10178865 = sum of:
            0.10178865 = weight(_text_:core in 1237) [ClassicSimilarity], result of:
              0.10178865 = score(doc=1237,freq=4.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.39457005 = fieldWeight in 1237, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1237)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The h-index provides us with 9 natural classes which can be written as a matrix of 3 vectors. The 3 vectors are: X = (X1, X2, X3) and indicates publication distribution in the h-core, the h-tail, and the uncited ones, respectively; Y = (Y1, Y2, Y3) denotes the citation distribution of the h-core, the h-tail and the so-called "excess" citations (above the h-threshold), respectively; and Z = (Z1, Z2, Z3) = (Y1-X1, Y2-X2, Y3-X3). The matrix V = (X,Y,Z)T constructs a measure of academic performance, in which the 9 numbers can all be provided with meanings in different dimensions. The "academic trace" tr(V) of this matrix follows naturally, and contributes a unique indicator for total academic achievements by summarizing and weighting the accumulation of publications and citations. This measure can also be used to combine the advantages of the h-index and the integrated impact indicator (I3) into a single number with a meaningful interpretation of the values. We illustrate the use of tr(V) for the cases of 2 journal sets, 2 universities, and ourselves as 2 individual authors.
  3. Leydesdorff, L.; Heimeriks, G.: ¬The self-organization of the European information society : the case of "biotechnology" (2001) 0.02
    0.01799386 = product of:
      0.03598772 = sum of:
        0.03598772 = product of:
          0.07197544 = sum of:
            0.07197544 = weight(_text_:core in 6524) [ClassicSimilarity], result of:
              0.07197544 = score(doc=6524,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.27900314 = fieldWeight in 6524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6524)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Fields of technoscience like biotechnology develop in a network mode: disciplinary insights from different backgrounds are recombined as competing innovation systems are continuously reshaped. The ongoing process of integration at the European level generates an additional network of transnational collaborations. Using the title words of scientific publications in five core journals of biotechnology, multivariate analysis is used to distinguish between the intellectual organization of the publications in terms of title words and the institutional network in terms of addresses of documents. The interaction among the representation of intellectual space in terms of words and co-words, and the potentially European network system is compared with the document sets with American and Japanese addresses. The European system can also be decomposed in terms of the contributions of member states. Whereas a European vocabulary can be made visible at the global level, this communality disappears by this decomposition. The network effect at the European level can be considered as institutional more than cognitive
  4. Leydesdorff, L.; Rafols, I.: ¬A global map of science based on the ISI subject categories (2009) 0.02
    0.01799386 = product of:
      0.03598772 = sum of:
        0.03598772 = product of:
          0.07197544 = sum of:
            0.07197544 = weight(_text_:core in 2713) [ClassicSimilarity], result of:
              0.07197544 = score(doc=2713,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.27900314 = fieldWeight in 2713, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2713)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The decomposition of scientific literature into disciplinary and subdisciplinary structures is one of the core goals of scientometrics. How can we achieve a good decomposition? The ISI subject categories classify journals included in the Science Citation Index (SCI). The aggregated journal-journal citation matrix contained in the Journal Citation Reports can be aggregated on the basis of these categories. This leads to an asymmetrical matrix (citing versus cited) that is much more densely populated than the underlying matrix at the journal level. Exploratory factor analysis of the matrix of subject categories suggests a 14-factor solution. This solution could be interpreted as the disciplinary structure of science. The nested maps of science (corresponding to 14 factors, 172 categories, and 6,164 journals) are online at http://www.leydesdorff.net/map06. Presumably, inaccuracies in the attribution of journals to the ISI subject categories average out so that the factor analysis reveals the main structures. The mapping of science could, therefore, be comprehensive and reliable on a large scale albeit imprecise in terms of the attribution of journals to the ISI subject categories.
  5. Leydesdorff, L.; Wagner, C.S.; Porto-Gomez, I.; Comins, J.A.; Phillips, F.: Synergy in the knowledge base of U.S. innovation systems at national, state, and regional levels : the contributions of high-tech manufacturing and knowledge-intensive services (2019) 0.02
    0.01799386 = product of:
      0.03598772 = sum of:
        0.03598772 = product of:
          0.07197544 = sum of:
            0.07197544 = weight(_text_:core in 5390) [ClassicSimilarity], result of:
              0.07197544 = score(doc=5390,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.27900314 = fieldWeight in 5390, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5390)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using information theory, we measure innovation systemness as synergy among size-classes, ZIP Codes, and technological classes (NACE-codes) for 8.5 million American companies. The synergy at the national level is decomposed at the level of states, Core-Based Statistical Areas (CBSA), and Combined Statistical Areas (CSA). We zoom in to the state of California and in more detail to Silicon Valley. Our results do not support the assumption of a national system of innovations in the U.S.A. Innovation systems appear to operate at the level of the states; the CBSA are too small, so that systemness spills across their borders. Decomposition of the sample in terms of high-tech manufacturing (HTM), medium-high-tech manufacturing (MHTM), knowledge-intensive services (KIS), and high-tech services (HTKIS) does not change this pattern, but refines it. The East Coast-New Jersey, Boston, and New York-and California are the major players, with Texas a third one in the case of HTKIS. Chicago and industrial centers in the Midwest also contribute synergy. Within California, Los Angeles contributes synergy in the sectors of manufacturing, the San Francisco area in KIS. KIS in Silicon Valley and the Bay Area-a CSA composed of seven CBSA-spill over to other regions and even globally.
  6. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.01
    0.01038072 = product of:
      0.02076144 = sum of:
        0.02076144 = product of:
          0.04152288 = sum of:
            0.04152288 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
              0.04152288 = score(doc=1621,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.23214069 = fieldWeight in 1621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 5.2003 19:48:04
  7. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.01
    0.01038072 = product of:
      0.02076144 = sum of:
        0.02076144 = product of:
          0.04152288 = sum of:
            0.04152288 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.04152288 = score(doc=4460,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    6.11.2005 19:02:22
  8. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.01
    0.01038072 = product of:
      0.02076144 = sum of:
        0.02076144 = product of:
          0.04152288 = sum of:
            0.04152288 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
              0.04152288 = score(doc=2761,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.23214069 = fieldWeight in 2761, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2761)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 19:07:20
  9. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.01
    0.01038072 = product of:
      0.02076144 = sum of:
        0.02076144 = product of:
          0.04152288 = sum of:
            0.04152288 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.04152288 = score(doc=4681,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    8. 1.2019 18:22:45
  10. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.01
    0.0086506 = product of:
      0.0173012 = sum of:
        0.0173012 = product of:
          0.0346024 = sum of:
            0.0346024 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.0346024 = score(doc=4186,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2011 12:51:07
  11. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.01
    0.0086506 = product of:
      0.0173012 = sum of:
        0.0173012 = product of:
          0.0346024 = sum of:
            0.0346024 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.0346024 = score(doc=4463,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    29. 9.2018 11:22:09