Search (53 results, page 1 of 3)

  • × theme_ss:"Semantic Web"
  1. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.08
    0.08183463 = product of:
      0.16366926 = sum of:
        0.16366926 = sum of:
          0.122146375 = weight(_text_:core in 2556) [ClassicSimilarity], result of:
            0.122146375 = score(doc=2556,freq=4.0), product of:
              0.25797358 = queryWeight, product of:
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.051078856 = queryNorm
              0.47348404 = fieldWeight in 2556, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.046875 = fieldNorm(doc=2556)
          0.04152288 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
            0.04152288 = score(doc=2556,freq=2.0), product of:
              0.17886946 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051078856 = queryNorm
              0.23214069 = fieldWeight in 2556, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2556)
      0.5 = coord(1/2)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
    Object
    Dublin Core
  2. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.07
    0.07460449 = product of:
      0.14920898 = sum of:
        0.14920898 = sum of:
          0.10076562 = weight(_text_:core in 2640) [ClassicSimilarity], result of:
            0.10076562 = score(doc=2640,freq=2.0), product of:
              0.25797358 = queryWeight, product of:
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.051078856 = queryNorm
              0.39060444 = fieldWeight in 2640, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2640)
          0.04844336 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
            0.04844336 = score(doc=2640,freq=2.0), product of:
              0.17886946 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051078856 = queryNorm
              0.2708308 = fieldWeight in 2640, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2640)
      0.5 = coord(1/2)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.05
    0.054556422 = product of:
      0.109112844 = sum of:
        0.109112844 = sum of:
          0.08143092 = weight(_text_:core in 2656) [ClassicSimilarity], result of:
            0.08143092 = score(doc=2656,freq=4.0), product of:
              0.25797358 = queryWeight, product of:
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.051078856 = queryNorm
              0.31565604 = fieldWeight in 2656, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
          0.02768192 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
            0.02768192 = score(doc=2656,freq=2.0), product of:
              0.17886946 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051078856 = queryNorm
              0.15476047 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
      0.5 = coord(1/2)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.05
    0.04836425 = product of:
      0.0967285 = sum of:
        0.0967285 = sum of:
          0.057580356 = weight(_text_:core in 2654) [ClassicSimilarity], result of:
            0.057580356 = score(doc=2654,freq=2.0), product of:
              0.25797358 = queryWeight, product of:
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.051078856 = queryNorm
              0.22320253 = fieldWeight in 2654, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
          0.03914815 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
            0.03914815 = score(doc=2654,freq=4.0), product of:
              0.17886946 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051078856 = queryNorm
              0.21886435 = fieldWeight in 2654, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
      0.5 = coord(1/2)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  5. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.04
    0.042631138 = product of:
      0.085262276 = sum of:
        0.085262276 = sum of:
          0.057580356 = weight(_text_:core in 2661) [ClassicSimilarity], result of:
            0.057580356 = score(doc=2661,freq=2.0), product of:
              0.25797358 = queryWeight, product of:
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.051078856 = queryNorm
              0.22320253 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
          0.02768192 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
            0.02768192 = score(doc=2661,freq=2.0), product of:
              0.17886946 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051078856 = queryNorm
              0.15476047 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
      0.5 = coord(1/2)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. Shaw, R.; Buckland, M.: Open identification and linking of the four Ws (2008) 0.04
    0.037302244 = product of:
      0.07460449 = sum of:
        0.07460449 = sum of:
          0.05038281 = weight(_text_:core in 2665) [ClassicSimilarity], result of:
            0.05038281 = score(doc=2665,freq=2.0), product of:
              0.25797358 = queryWeight, product of:
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.051078856 = queryNorm
              0.19530222 = fieldWeight in 2665, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.0504966 = idf(docFreq=769, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2665)
          0.02422168 = weight(_text_:22 in 2665) [ClassicSimilarity], result of:
            0.02422168 = score(doc=2665,freq=2.0), product of:
              0.17886946 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051078856 = queryNorm
              0.1354154 = fieldWeight in 2665, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2665)
      0.5 = coord(1/2)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  7. Resource Description Framework (RDF) (2004) 0.03
    0.028790178 = product of:
      0.057580356 = sum of:
        0.057580356 = product of:
          0.11516071 = sum of:
            0.11516071 = weight(_text_:core in 3063) [ClassicSimilarity], result of:
              0.11516071 = score(doc=3063,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.44640505 = fieldWeight in 3063, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3063)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Resource Description Framework (RDF) integrates a variety of applications from library catalogs and world-wide directories to syndication and aggregation of news, software, and content to personal collections of music, photos, and events using XML as an interchange syntax. The RDF specifications provide a lightweight ontology system to support the exchange of knowledge on the Web. The W3C Semantic Web Activity Statement explains W3C's plans for RDF, including the RDF Core WG, Web Ontology and the RDF Interest Group.
  8. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.03
    0.027042255 = product of:
      0.05408451 = sum of:
        0.05408451 = product of:
          0.16225353 = sum of:
            0.16225353 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16225353 = score(doc=701,freq=2.0), product of:
                0.43304712 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.051078856 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  9. Manaf, N.A. Abdul; Bechhofer, S.; Stevens, R.: ¬The current state of SKOS vocabularies on the Web (2012) 0.03
    0.025447162 = product of:
      0.050894324 = sum of:
        0.050894324 = product of:
          0.10178865 = sum of:
            0.10178865 = weight(_text_:core in 266) [ClassicSimilarity], result of:
              0.10178865 = score(doc=266,freq=4.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.39457005 = fieldWeight in 266, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a survey of the current state of Simple Knowledge Organization System (SKOS) vocabularies on the Web. Candidate vocabularies were gathered through collections and web crawling, with 478 identified as complying to a given definition of a SKOS vocabulary. Analyses were then conducted that included investigation of the use of SKOS constructs; the use of SKOS semantic relations and lexical labels; and the structure of vocabularies in terms of the hierarchical and associative relations, branching factors and the depth of the vocabularies. Even though SKOS concepts are considered to be the core of SKOS vocabularies, our findings were that not all SKOS vocabularies published explicitly declared SKOS concepts in the vocabularies. Almost one-third of th SKOS vocabularies collected fall into the category of term lists, with no use of any SKOS semantic relations. As concept labelling is core to SKOS vocabularies, a surprising find is that not all SKOS vocabularies use SKOS lexical labels, whether skos:prefLabel or skos:altLabel, for their concepts. The branching factors and maximum depth of the vocabularies have no direct relationship to the size of the vocabularies. We also observed some common modelling slips found in SKOS vocabularies. The survey is useful when considering, for example, converting artefacts such as OWL ontologies into SKOS, where a definition of typicality of SKOS vocabularies could be used to guide the conversion. Moreover, the survey results can serve to provide a better understanding of the modelling styles of the SKOS vocabularies published on the Web, especially when considering the creation of applications that utilize these vocabularies.
  10. Hildebrand, M.; Ossenbruggen, J. van; Hardman, L.: ¬An analysis of search-based user interaction on the Semantic Web (2007) 0.03
    0.025191406 = product of:
      0.05038281 = sum of:
        0.05038281 = product of:
          0.10076562 = sum of:
            0.10076562 = weight(_text_:core in 59) [ClassicSimilarity], result of:
              0.10076562 = score(doc=59,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.39060444 = fieldWeight in 59, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=59)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many Semantic Web applications provide access to their resources through text-based search queries, using explicit semantics to improve the search results. This paper provides an analysis of the current state of the art in semantic search, based on 35 existing systems. We identify different types of semantic search features that are used during query construction, the core search process, the presentation of the search results and user feedback on query and results. For each of these, we consider the functionality that the system provides and how this is made available through the user interface.
  11. Padmavathi, T.; Krishnamurthy, M.: Semantic Web tools and techniques for knowledge organization : an overview (2017) 0.03
    0.025191406 = product of:
      0.05038281 = sum of:
        0.05038281 = product of:
          0.10076562 = sum of:
            0.10076562 = weight(_text_:core in 3618) [ClassicSimilarity], result of:
              0.10076562 = score(doc=3618,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.39060444 = fieldWeight in 3618, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3618)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The enormous amount of information generated every day and spread across the web is diversified in nature far beyond human consumption. To overcome this difficulty, the transformation of current unstructured information into a structured form called a "Semantic Web" was proposed by Tim Berners-Lee in 1989 to enable computers to understand and interpret the information they store. The aim of the semantic web is the integration of heterogeneous and distributed data spread across the web for knowledge discovery. The core of sematic web technologies includes knowledge representation languages RDF and OWL, ontology editors and reasoning tools, and ontology query languages such as SPARQL have also been discussed.
  12. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.02
    0.02422168 = product of:
      0.04844336 = sum of:
        0.04844336 = product of:
          0.09688672 = sum of:
            0.09688672 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.09688672 = score(doc=4643,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  13. Tillett, B.B.: AACR2 and metadata : library opportunities in the global semantic Web (2003) 0.02
    0.021592634 = product of:
      0.043185268 = sum of:
        0.043185268 = product of:
          0.086370535 = sum of:
            0.086370535 = weight(_text_:core in 5510) [ClassicSimilarity], result of:
              0.086370535 = score(doc=5510,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.3348038 = fieldWeight in 5510, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5510)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Explores the opportunities for libraries to contribute to the proposed global "Semantic Web." Library name and subject authority files, including work that IFLA has done related to a new view of "Universal Bibliographic Control" in the Internet environment and the work underway in the U.S. and Europe, are making a reality of the virtual international authority file on the Web. The bibliographic and authority records created according to AACR2 reflect standards for metadata that libraries have provided for years. New opportunities for using these records in the digital world are described (interoperability), including mapping with Dublin Core metadata. AACR2 recently updated Chapter 9 on Electronic Resources. That process and highlights of the changes are described, including Library of Congress' rule interpretations.
  14. Miles, A.: SKOS: requirements for standardization (2006) 0.02
    0.021592634 = product of:
      0.043185268 = sum of:
        0.043185268 = product of:
          0.086370535 = sum of:
            0.086370535 = weight(_text_:core in 5703) [ClassicSimilarity], result of:
              0.086370535 = score(doc=5703,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.3348038 = fieldWeight in 5703, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5703)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Presented at the International Conference on Dublin Core and Metadata Applications in October 2006
  15. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia (2007) 0.02
    0.021592634 = product of:
      0.043185268 = sum of:
        0.043185268 = product of:
          0.086370535 = sum of:
            0.086370535 = weight(_text_:core in 3403) [ClassicSimilarity], result of:
              0.086370535 = score(doc=3403,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.3348038 = fieldWeight in 3403, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3403)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  16. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.02
    0.021592634 = product of:
      0.043185268 = sum of:
        0.043185268 = product of:
          0.086370535 = sum of:
            0.086370535 = weight(_text_:core in 3731) [ClassicSimilarity], result of:
              0.086370535 = score(doc=3731,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.3348038 = fieldWeight in 3731, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3731)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
  17. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.02
    0.02076144 = product of:
      0.04152288 = sum of:
        0.04152288 = product of:
          0.08304576 = sum of:
            0.08304576 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.08304576 = score(doc=6048,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  18. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.02
    0.02076144 = product of:
      0.04152288 = sum of:
        0.04152288 = product of:
          0.08304576 = sum of:
            0.08304576 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.08304576 = score(doc=100,freq=2.0), product of:
                0.17886946 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051078856 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  19. Veltman, K.H.: Syntactic and semantic interoperability : new approaches to knowledge and the Semantic Web (2001) 0.02
    0.02035773 = product of:
      0.04071546 = sum of:
        0.04071546 = product of:
          0.08143092 = sum of:
            0.08143092 = weight(_text_:core in 3883) [ClassicSimilarity], result of:
              0.08143092 = score(doc=3883,freq=4.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.31565604 = fieldWeight in 3883, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    At VVWW-7 (Brisbane, 1997), Tim Berners-Lee outlined his vision of a global reasoning web. At VVWW- 8 (Toronto, May 1998), he developed this into a vision of a semantic web, where one Gould search not just for isolated words, but for meaning in the form of logically provable claims. In the past four years this vision has spread with amazing speed. The semantic web has been adopted by the European Commission as one of the important goals of the Sixth Framework Programme. In the United States it has become linked with the Defense Advanced Research Projects Agency (DARPA). While this quest to achieve a semantic web is new, the quest for meaning in language has a history that is almost as old as language itself. Accordingly this paper opens with a survey of the historical background. The contributions of the Dublin Core are reviewed briefly. To achieve a semantic web requires both syntactic and semantic interoperability. These challenges are outlined. A basic contention of this paper is that semantic interoperability requires much more than a simple agreement concerning the static meaning of a term. Different levels of agreement (local, regional, national and international) are involved and these levels have their own history. Hence, one of the larger challenges is to create new systems of knowledge organization, which identify and connect these different levels. With respect to meaning or semantics, early twentieth century pioneers such as Wüster were hopeful that it might be sufficient to limit oneself to isolated terms and words without reference to the larger grammatical context: to concept systems rather than to propositional logic. While a fascination with concept systems implicitly dominates many contemporary discussions, this paper suggests why this approach is not sufficient. The final section of this paper explores how an approach using propositional logic could lead to a new approach to universals and particulars. This points to a re-organization of knowledge, and opens the way for a vision of a semantic web with all the historical and cultural richness and complexity of language itself.
    Footnote
    Initially written for Dublin Core Meeting in 2000 which rejected the article.
  20. Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools (2004) 0.02
    0.01799386 = product of:
      0.03598772 = sum of:
        0.03598772 = product of:
          0.07197544 = sum of:
            0.07197544 = weight(_text_:core in 3152) [ClassicSimilarity], result of:
              0.07197544 = score(doc=3152,freq=2.0), product of:
                0.25797358 = queryWeight, product of:
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.051078856 = queryNorm
                0.27900314 = fieldWeight in 3152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.0504966 = idf(docFreq=769, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3152)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Table of Contents Part I: Accepted Papers Christoph Tempich and Raphael Volz: Towards a benchmark for Semantic Web reasoners - an analysis of the DAML ontology library M. Carmen Suarez-Figueroa and Asuncion Gomez-Perez: Results of Taxonomic Evaluation of RDF(S) and DAML+OIL ontologies using RDF(S) and DAML+OIL Validation Tools and Ontology Platforms import services Volker Haarslev and Ralf Möller: Racer: A Core Inference Engine for the Semantic Web Mikhail Kazakov and Habib Abdulrab: DL-workbench: a metamodeling approach to ontology manipulation Thorsten Liebig and Olaf Noppens: OntoTrack: Fast Browsing and Easy Editing of Large Ontologie Frederic Fürst, Michel Leclere, and Francky Trichet: TooCoM : a Tool to Operationalize an Ontology with the Conceptual Graph Model Naoki Sugiura, Masaki Kurematsu, Naoki Fukuta, Noriaki Izumi, and Takahira Yamaguchi: A domain ontology engineering tool with general ontologies and text corpus Howard Goldberg, Alfredo Morales, David MacMillan, and Matthew Quinlan: An Ontology-Driven Application to Improve the Prescription of Educational Resources to Parents of Premature Infants Part II: Experiment Contributions Domain natural language description for the experiment Raphael Troncy, Antoine Isaac, and Veronique Malaise: Using XSLT for Interoperability: DOE and The Travelling Domain Experiment Christian Fillies: SemTalk EON2003 Semantic Web Export / Import Interface Test Óscar Corcho, Asunción Gómez-Pérez, Danilo José Guerrero-Rodríguez, David Pérez-Rey, Alberto Ruiz-Cristina, Teresa Sastre-Toral, M. Carmen Suárez-Figueroa: Evaluation experiment of ontology tools' interoperability with the WebODE ontology engineering workbench Holger Knublauch: Case Study: Using Protege to Convert the Travel Ontology to UML and OWL Franz Calvo and John Gennari: Interoperability of Protege 2.0 beta and OilEd 3.5 in the Domain Knowledge of Osteoporosis

Authors

Years

Languages

  • e 43
  • d 10

Types

  • a 30
  • el 18
  • m 7
  • s 4
  • n 2
  • r 2
  • x 1
  • More… Less…