Search (4 results, page 1 of 1)

  • × classification_ss:"ST 515"
  1. Weinberger, D.: Too big to know : rethinking knowledge now that the facts aren't the facts, experts are everywhere, and the smartest person in the room is the room (2011) 0.01
    0.013086656 = product of:
      0.06543328 = sum of:
        0.06543328 = weight(_text_:books in 334) [ClassicSimilarity], result of:
          0.06543328 = score(doc=334,freq=4.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.26430926 = fieldWeight in 334, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.02734375 = fieldNorm(doc=334)
      0.2 = coord(1/5)
    
    Abstract
    In this title, a leading philosopher of the internet explains how knowledge and expertise can still work - and even grow stronger - in an age when the internet has made topics simply Too Big to Know. Knowing used to be so straightforward. If we wanted to know something we looked it up, asked an expert, gathered the facts, weighted the possibilities, and honed in on the best answer ourselves. But, ironically, with the advent of the internet and the limitless information it contains, we're less sure about what we know, who knows what, or even what it means to know at all. Knowledge, it would appear, is in crisis. And yet, while its very foundations seem to be collapsing, human knowledge has grown in previously unimaginable ways, and in inconceivable directions, in the Internet age. We fact-check the news media more closely and publicly than ever before. Science is advancing at an unheard of pace thanks to new collaborative techniques and new ways to find patterns in vast amounts of data. Businesses are finding expertise in every corner of their organization, and across the broad swath of their stakeholders. We are in a crisis of knowledge at the same time that we are in an epochal exaltation of knowledge. In "Too Big to Know", Internet philosopher David Weinberger explains that, rather than a systemic collapse, the Internet era represents a fundamental change in the methods we have for understanding the world around us. Weinberger argues that our notions of expertise - what it is, how it works, and how it is cultivated - are out of date, rooted in our pre-networked culture and assumptions. For thousands of years, we've relied upon a reductionist process of filtering, winnowing, and otherwise reducing the complex world to something more manageable in order to understand it. Back then, an expert was someone who had mastered a particular, well-defined domain. Now, we live in an age when topics are blown apart and stitched together by momentary interests, diverse points of view, and connections ranging from the insightful to the perverse. Weinberger shows that, while the limits of our own paper-based tools have historically prevented us from achieving our full capacity of knowledge, we can now be as smart as our new medium allows - but we will be smart differently. For the new medium is a network, and that network changes our oldest, most basic strategy of knowing. Rather than knowing-by-reducing, we are now knowing-by-including. Indeed, knowledge now is best thought of not as the content of books or even of minds, but as the way the network works. Knowledge will never be the same - not for science, not for business, not for education, not for government, not for any of us. As Weinberger makes clear, to make sense of this new system of knowledge, we need - and smart companies are developing - networks that are themselves experts. Full of rich and sometimes surprising examples from history, politics, business, philosophy, and science, "Too Big to Know" describes how the very foundations of knowledge have been overturned, and what this revolution means for our future.
    Imprint
    New York : Basic Books
  2. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.01
    0.010575616 = product of:
      0.052878078 = sum of:
        0.052878078 = weight(_text_:books in 4041) [ClassicSimilarity], result of:
          0.052878078 = score(doc=4041,freq=2.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.21359414 = fieldWeight in 4041, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.03125 = fieldNorm(doc=4041)
      0.2 = coord(1/5)
    
    Abstract
    Class-tested and coherent, this textbook teaches information retrieval, including web search, text classification, and text clustering from basic concepts. Ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students. Slides and additional exercises are available for lecturers. - This book provides what Salton and Van Rijsbergen both failed to achieve. Even more important, unlike some other books in IR, the authors appear to care about making the theory as accessible as possible to the reader, on occasion including short primers to certain topics or choosing to explain difficult concepts using simplified approaches. Its coverage [is] excellent, the quality of writing high and I was surprised how much I learned from reading it. I think the online resources are impressive.
  3. Marchionini, G.: Information concepts : from books to cyberspace identities (2010) 0.01
    0.010575616 = product of:
      0.052878078 = sum of:
        0.052878078 = weight(_text_:books in 2) [ClassicSimilarity], result of:
          0.052878078 = score(doc=2,freq=2.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.21359414 = fieldWeight in 2, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.03125 = fieldNorm(doc=2)
      0.2 = coord(1/5)
    
  4. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.01
    0.009253663 = product of:
      0.046268314 = sum of:
        0.046268314 = weight(_text_:books in 4515) [ClassicSimilarity], result of:
          0.046268314 = score(doc=4515,freq=2.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.18689486 = fieldWeight in 4515, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.2 = coord(1/5)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.