Search (61 results, page 1 of 4)

  • × theme_ss:"Wissensrepräsentation"
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.05
    0.048813082 = product of:
      0.2440654 = sum of:
        0.2440654 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
          0.2440654 = score(doc=400,freq=2.0), product of:
            0.43426615 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.051222645 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.2 = coord(1/5)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  2. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.03
    0.032542057 = product of:
      0.16271028 = sum of:
        0.16271028 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
          0.16271028 = score(doc=701,freq=2.0), product of:
            0.43426615 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.051222645 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.2 = coord(1/5)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  3. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.03
    0.032542057 = product of:
      0.16271028 = sum of:
        0.16271028 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
          0.16271028 = score(doc=5820,freq=2.0), product of:
            0.43426615 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.051222645 = queryNorm
            0.3746787 = fieldWeight in 5820, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.2 = coord(1/5)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  4. Khoo, C.S.G.; Zhang, D.; Wang, M.; Yun, X.J.: Subject organization in three types of information resources : an exploratory study (2012) 0.03
    0.02643904 = product of:
      0.1321952 = sum of:
        0.1321952 = weight(_text_:books in 831) [ClassicSimilarity], result of:
          0.1321952 = score(doc=831,freq=8.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.5339854 = fieldWeight in 831, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.0390625 = fieldNorm(doc=831)
      0.2 = coord(1/5)
    
    Abstract
    Knowledge tends to be structured differently in different types of information resources and information genres due to the different purposes of the resource/genre, and the characteristics of the media or format of the resource. This study investigates subject organization in three types of information resources: books (i.e. monographs), Web directories and information websites that provide information on particular subjects. Twelve subjects (topics) were selected in the areas of science, arts/humanities and social science, and two books, two Web directories and two information websites were sampled for each subject. The top two levels of the hierarchical subject organization in each resource were harvested and analyzed. Books have the highest proportion of general subject categories (e.g. history, theory and definition) and process categories (indicating step-by-step instructions). Information websites have the highest proportion of target user categories and genre-specific categories (e.g. about us and contact us), whereas Web directories have the highest proportion of specialty categories (i.e. sub-disciplines), industry-role categories (e.g. stores, schools and associations) and format categories (e.g. books, blogs and videos). Some disciplinary differences were also identified.
  5. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.02
    0.016027816 = product of:
      0.08013908 = sum of:
        0.08013908 = weight(_text_:books in 3062) [ClassicSimilarity], result of:
          0.08013908 = score(doc=3062,freq=6.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.32371143 = fieldWeight in 3062, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
      0.2 = coord(1/5)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  6. Frické, M.: Logic and the organization of information (2012) 0.02
    0.016027816 = product of:
      0.08013908 = sum of:
        0.08013908 = weight(_text_:books in 1782) [ClassicSimilarity], result of:
          0.08013908 = score(doc=1782,freq=6.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.32371143 = fieldWeight in 1782, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
      0.2 = coord(1/5)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
  7. Sperber, W.; Ion, P.D.F.: Content analysis and classification in mathematics (2011) 0.02
    0.015863424 = product of:
      0.079317115 = sum of:
        0.079317115 = weight(_text_:books in 4818) [ClassicSimilarity], result of:
          0.079317115 = score(doc=4818,freq=2.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.3203912 = fieldWeight in 4818, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.046875 = fieldNorm(doc=4818)
      0.2 = coord(1/5)
    
    Abstract
    The number of publications in mathematics increases faster each year. Presently far more than 100,000 mathematically relevant journal articles and books are published annually. Efficient and high-quality content analysis of this material is important for mathematical bibliographic services such as ZBMath or MathSciNet. Content analysis has different facets and levels: classification, keywords, abstracts and reviews, and (in the future) formula analysis. It is the opinion of the authors that the different levels have to be enhanced and combined using the methods and technology of the Semantic Web. In the presentation, the problems and deficits of the existing methods and tools, the state of the art and current activities are discussed. As a first step, the Mathematical Subject Classification Scheme (MSC), has been encoded with Simple Knowledge Organization System (SKOS) and Resource Description Framework (RDF) at its recent revision to MSC2010. The use of SKOS principally opens new possibilities for the enrichment and wider deployment of this classification scheme and for machine-based content analysis of mathematical publications.
  8. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.01
    0.013879924 = product of:
      0.06939962 = sum of:
        0.06939962 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
          0.06939962 = score(doc=6089,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.38690117 = fieldWeight in 6089, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=6089)
      0.2 = coord(1/5)
    
    Pages
    S.11-22
  9. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.013879924 = product of:
      0.06939962 = sum of:
        0.06939962 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
          0.06939962 = score(doc=5576,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.38690117 = fieldWeight in 5576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=5576)
      0.2 = coord(1/5)
    
    Date
    13.12.2017 14:17:22
  10. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.01
    0.013879924 = product of:
      0.06939962 = sum of:
        0.06939962 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
          0.06939962 = score(doc=539,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.38690117 = fieldWeight in 539, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=539)
      0.2 = coord(1/5)
    
    Date
    26.12.2011 13:22:07
  11. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.01
    0.013879924 = product of:
      0.06939962 = sum of:
        0.06939962 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
          0.06939962 = score(doc=3406,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.38690117 = fieldWeight in 3406, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=3406)
      0.2 = coord(1/5)
    
    Date
    30. 5.2010 16:22:35
  12. Nielsen, M.: Neuronale Netze : Alpha Go - Computer lernen Intuition (2018) 0.01
    0.013879924 = product of:
      0.06939962 = sum of:
        0.06939962 = weight(_text_:22 in 4523) [ClassicSimilarity], result of:
          0.06939962 = score(doc=4523,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.38690117 = fieldWeight in 4523, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=4523)
      0.2 = coord(1/5)
    
    Source
    Spektrum der Wissenschaft. 2018, H.1, S.22-27
  13. Giunchiglia, F.; Dutta, B.; Maltese, V.: From knowledge organization to knowledge representation (2014) 0.01
    0.01321952 = product of:
      0.0660976 = sum of:
        0.0660976 = weight(_text_:books in 1369) [ClassicSimilarity], result of:
          0.0660976 = score(doc=1369,freq=2.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.2669927 = fieldWeight in 1369, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1369)
      0.2 = coord(1/5)
    
    Abstract
    So far, within the library and information science (LIS) community, knowledge organization (KO) has developed its own very successful solutions to document search, allowing for the classification, indexing and search of millions of books. However, current KO solutions are limited in expressivity as they only support queries by document properties, e.g., by title, author and subject. In parallel, within the artificial intelligence and semantic web communities, knowledge representation (KR) has developed very powerful end expressive techniques, which via the use of ontologies support queries by any entity property (e.g., the properties of the entities described in a document). However, KR has not scaled yet to the level of KO, mainly because of the lack of a precise and scalable entity specification methodology. In this paper we present DERA, a new methodology inspired by the faceted approach, as introduced in KO, that retains all the advantages of KR and compensates for the limitations of KO. DERA guarantees at the same time quality, extensibility, scalability and effectiveness in search.
  14. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.011777506 = product of:
      0.05888753 = sum of:
        0.05888753 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
          0.05888753 = score(doc=3355,freq=4.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.32829654 = fieldWeight in 3355, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
      0.2 = coord(1/5)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  15. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.011103938 = product of:
      0.055519693 = sum of:
        0.055519693 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
          0.055519693 = score(doc=3376,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.30952093 = fieldWeight in 3376, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=3376)
      0.2 = coord(1/5)
    
    Date
    31. 7.2010 16:58:22
  16. OWL Web Ontology Language Test Cases (2004) 0.01
    0.011103938 = product of:
      0.055519693 = sum of:
        0.055519693 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
          0.055519693 = score(doc=4685,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.30952093 = fieldWeight in 4685, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=4685)
      0.2 = coord(1/5)
    
    Date
    14. 8.2011 13:33:22
  17. Giunchiglia, F.; Villafiorita, A.; Walsh, T.: Theories of abstraction (1997) 0.01
    0.011103938 = product of:
      0.055519693 = sum of:
        0.055519693 = weight(_text_:22 in 4476) [ClassicSimilarity], result of:
          0.055519693 = score(doc=4476,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.30952093 = fieldWeight in 4476, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=4476)
      0.2 = coord(1/5)
    
    Date
    1.10.2018 14:13:22
  18. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.01
    0.011103938 = product of:
      0.055519693 = sum of:
        0.055519693 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
          0.055519693 = score(doc=318,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.30952093 = fieldWeight in 318, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0625 = fieldNorm(doc=318)
      0.2 = coord(1/5)
    
    Date
    22. 5.2021 12:43:05
  19. Ricci, F.; Schneider, R.: ¬Die Verwendung von SKOS-Daten zur semantischen Suchfragenerweiterung im Kontext des individualisierbaren Informationsportals RODIN (2010) 0.01
    0.010575616 = product of:
      0.052878078 = sum of:
        0.052878078 = weight(_text_:books in 4261) [ClassicSimilarity], result of:
          0.052878078 = score(doc=4261,freq=2.0), product of:
            0.24756333 = queryWeight, product of:
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.051222645 = queryNorm
            0.21359414 = fieldWeight in 4261, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8330836 = idf(docFreq=956, maxDocs=44218)
              0.03125 = fieldNorm(doc=4261)
      0.2 = coord(1/5)
    
    Content
    "Im Projekt RODIN (Roue d'information) wird die Realisierung einer alternativen Portalidee im Rahmen der E-lib.ch-Initiative (www.e-lib.ch) angestrebt. Dahinter verbirgt sich die Idee eines personalisierbaren Informationsportals zur Aggregation heterogener Datenquellen unter Verwendung von SemanticWeb-Technologie. Das allgemeine wissenschaftliche Interesse von RODIN besteht darin, zu überprüfen, inwieweit bibliografische Ontologien als Bestandteil des SemanticWeb für die Informationssuche gewinnbringend eingesetzt werden können. Den Benutzern werden hierbei unterschiedliche Funktionalitäten zur Verfügung gestellt. So können sie zunächst aus unterschiedlichen Informationsquellen jene auswählen, die für ihre Recherche von Relevanz sind und diese in Form von Widgets auf der Startseite des Informationsportals zusammenstellen. Konkret handelt es sich hierbei um Informationsquellen, die im Kontext von E-lib.ch bereitgestellt werden (bspw. Swissbib.ch, Rero-Doc) sowie um allgemeine Webressourcen (etwa Delicious oder Google-Books). Anschließend besteht die Möglichkeit, simultan über alle spezifizierten Quellen eine parallele Suche anzustoßen und - nach Beendigung dieser Metasuche - die Ergebnisse zu verfeinern.
  20. Priss, U.: Faceted information representation (2000) 0.01
    0.009715946 = product of:
      0.04857973 = sum of:
        0.04857973 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
          0.04857973 = score(doc=5095,freq=2.0), product of:
            0.17937298 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051222645 = queryNorm
            0.2708308 = fieldWeight in 5095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5095)
      0.2 = coord(1/5)
    
    Date
    22. 1.2016 17:47:06

Authors

Years

Languages

  • e 49
  • d 12

Types

  • a 44
  • el 14
  • x 5
  • m 4
  • n 1
  • r 1
  • More… Less…