Search (7 results, page 1 of 1)

  • × author_ss:"Priss, U."
  1. Priss, U.: Faceted knowledge representation (1999) 0.05
    0.053411067 = product of:
      0.13352767 = sum of:
        0.0848197 = weight(_text_:thesaurus in 2654) [ClassicSimilarity], result of:
          0.0848197 = score(doc=2654,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.3573933 = fieldWeight in 2654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2654)
        0.048707973 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
          0.048707973 = score(doc=2654,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.2708308 = fieldWeight in 2654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2654)
      0.4 = coord(2/5)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
  2. Priss, U.: Description logic and faceted knowledge representation (1999) 0.05
    0.045780916 = product of:
      0.11445229 = sum of:
        0.072702594 = weight(_text_:thesaurus in 2655) [ClassicSimilarity], result of:
          0.072702594 = score(doc=2655,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.30633712 = fieldWeight in 2655, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
        0.04174969 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
          0.04174969 = score(doc=2655,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.23214069 = fieldWeight in 2655, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=2655)
      0.4 = coord(2/5)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  3. Priss, U.: Lattice-based information retrieval (2000) 0.03
    0.029382406 = product of:
      0.14691202 = sum of:
        0.14691202 = weight(_text_:thesaurus in 6055) [ClassicSimilarity], result of:
          0.14691202 = score(doc=6055,freq=6.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.6190234 = fieldWeight in 6055, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6055)
      0.2 = coord(1/5)
    
    Abstract
    A lattice-based model for information retrieval was suggested in the 1960's but has been seen as a theoretical possibility hard to practically apply ever since. This paper attempts to revive the lattice model and demonstrate its applicability in an information retrieval system, FalR, that incorporates a graphical representation of a faceted thesaurus. It shows how Boolean queries can be lattice-theoretically related to the concepts of the thesaurus and visualized within the thesaurus display. An advantage of FaIR is that it allows for a high level of transparency of the system, which can be controlled by the user
  4. Priss, U.; Old, L.J.: Concept neighbourhoods in knowledge organisation systems (2010) 0.03
    0.027417867 = product of:
      0.13708933 = sum of:
        0.13708933 = weight(_text_:thesaurus in 3527) [ClassicSimilarity], result of:
          0.13708933 = score(doc=3527,freq=4.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.5776348 = fieldWeight in 3527, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0625 = fieldNorm(doc=3527)
      0.2 = coord(1/5)
    
    Abstract
    This paper discusses the application of concept neighbourhoods (in the sense of formal concept analysis) to knowledge organisation systems. Examples are provided using Roget's Thesaurus, WordNet and Wikipedia categories.
    Object
    Roget's Thesaurus
  5. Priss, U.: ¬A graphical interface for conceptually navigating faceted thesauri (1998) 0.02
    0.01696394 = product of:
      0.0848197 = sum of:
        0.0848197 = weight(_text_:thesaurus in 6658) [ClassicSimilarity], result of:
          0.0848197 = score(doc=6658,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.3573933 = fieldWeight in 6658, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6658)
      0.2 = coord(1/5)
    
    Abstract
    This paper describes a graphical interface for the navigation and construction of faceted thesauri that is based on formal concept analysis. Each facet of a thesaurus is represented as a mathematical lattice that is further subdivided into components. Users can graphically navigate through the Java implementation of the interface by clicking on terms that connect facets and components. Since there are many applications for thesauri in the knowledge representation field, such a graphical interface has the potential of being very useful
  6. Priss, U.: Faceted information representation (2000) 0.01
    0.009741595 = product of:
      0.048707973 = sum of:
        0.048707973 = weight(_text_:22 in 5095) [ClassicSimilarity], result of:
          0.048707973 = score(doc=5095,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.2708308 = fieldWeight in 5095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5095)
      0.2 = coord(1/5)
    
    Date
    22. 1.2016 17:47:06
  7. Priss, U.; Jacob, E.: Utilizing faceted structures for information systems design (1999) 0.01
    0.009693679 = product of:
      0.048468396 = sum of:
        0.048468396 = weight(_text_:thesaurus in 2470) [ClassicSimilarity], result of:
          0.048468396 = score(doc=2470,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.20422474 = fieldWeight in 2470, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.03125 = fieldNorm(doc=2470)
      0.2 = coord(1/5)
    
    Abstract
    Even for the experienced information professional, designing an efficient multi-purpose information access structure can be a very difficult task. This paper argues for the use of a faceted thesaurus as the basis for organizing a small-scale institutional website. We contend that a faceted approach to knowledge organization can make the process of organization less random and more manageable. We begin by reporting on an informal survey of three institutional websites. This study underscores the problems of organization that can impact access to information. We then formalize the terminology of faceted thesauri and demonstrate its application with several examples.