Search (1 results, page 1 of 1)

  • × classification_ss:"610.28 / DDC22ger"
  • × theme_ss:"Multilinguale Probleme"
  1. Markó, K.G.: Foundation, implementation and evaluation of the MorphoSaurus system (2008) 0.01
    0.00848197 = product of:
      0.04240985 = sum of:
        0.04240985 = weight(_text_:thesaurus in 4415) [ClassicSimilarity], result of:
          0.04240985 = score(doc=4415,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.17869665 = fieldWeight in 4415, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4415)
      0.2 = coord(1/5)
    
    Abstract
    The proper handling of acronyms plays a crucial role in medical texts, e.g. in patient records, as well as in scientific literature. Chapter six presents an approach, in which acronyms are automatically acquired from (bio-) medical literature. Furthermore, acronyms and their definitions in different languages are linked to each other using the MorphoSaurus text processing system. Automatic word sense disambiguation is still one of the most challenging tasks in Natural Language Processing. In Chapter seven, cross-lingual considerations lead to a new methodology for automatic disambiguation applied to subwords. Beginning with Chapter eight, a series of applications based onMorphoSaurus are introduced. Firstly, the implementation of the subword approach within a crosslanguage information retrieval setting for the medical domain is described and evaluated on standard test document collections. In Chapter nine, this methodology is extended to multilingual information retrieval in the Web, for which user queries are translated into target languages based on the segmentation into subwords and their interlingual mappings. The cross-lingual, automatic assignment of document descriptors to documents is the topic of Chapter ten. A large-scale evaluation of a heuristic, as well as a statistical algorithm is carried out using a prominent medical thesaurus as a controlled vocabulary. In Chapter eleven, it will be shown how MorphoSaurus can be used to map monolingual, lexical resources across different languages. As a result, a large multilingual medical lexicon with high coverage and complete lexical information is built and evaluated against a comparable, already available and commonly used lexical repository for the medical domain. Chapter twelve sketches a few applications based on MorphoSaurus. The generality and applicability of the subword approach to other domains is outlined, and proof-of-concepts in real-world scenarios are presented. Finally, Chapter thirteen recapitulates the most important aspects of MorphoSaurus and the potential benefit of its employment in medical information systems is carefully assessed, both for medical experts in their everyday life, but also with regard to health care consumers and their existential information needs.