Search (11 results, page 1 of 1)

  • × theme_ss:"Visualisierung"
  • × year_i:[2010 TO 2020}
  1. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.03
    0.030520609 = product of:
      0.07630152 = sum of:
        0.048468396 = weight(_text_:thesaurus in 1444) [ClassicSimilarity], result of:
          0.048468396 = score(doc=1444,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.20422474 = fieldWeight in 1444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.03125 = fieldNorm(doc=1444)
        0.027833126 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
          0.027833126 = score(doc=1444,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.15476047 = fieldWeight in 1444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=1444)
      0.4 = coord(2/5)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Eckert, K: ¬The ICE-map visualization (2011) 0.02
    0.019387359 = product of:
      0.09693679 = sum of:
        0.09693679 = weight(_text_:thesaurus in 4743) [ClassicSimilarity], result of:
          0.09693679 = score(doc=4743,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.40844947 = fieldWeight in 4743, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0625 = fieldNorm(doc=4743)
      0.2 = coord(1/5)
    
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  3. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.01
    0.013916564 = product of:
      0.06958282 = sum of:
        0.06958282 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
          0.06958282 = score(doc=2755,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.38690117 = fieldWeight in 2755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=2755)
      0.2 = coord(1/5)
    
    Date
    1. 2.2016 18:25:22
  4. Seeliger, F.: ¬A tool for systematic visualization of controlled descriptors and their relation to others as a rich context for a discovery system (2015) 0.01
    0.013708933 = product of:
      0.06854466 = sum of:
        0.06854466 = weight(_text_:thesaurus in 2547) [ClassicSimilarity], result of:
          0.06854466 = score(doc=2547,freq=4.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.2888174 = fieldWeight in 2547, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.03125 = fieldNorm(doc=2547)
      0.2 = coord(1/5)
    
    Abstract
    The discovery service (a search engine and service called WILBERT) used at our library at the Technical University of Applied Sciences Wildau (TUAS Wildau) is comprised of more than 8 million items. If we were to record all licensed publications in this tool to a higher level of articles, including their bibliographic records and full texts, we would have a holding estimated at a hundred million documents. A lot of features, such as ranking, autocompletion, multi-faceted classification, refining opportunities reduce the number of hits. However, it is not enough to give intuitive support for a systematic overview of topics related to documents in the library. John Naisbitt once said: "We are drowning in information, but starving for knowledge." This quote is still very true today. Two years ago, we started to develop micro thesauri for MINT topics in order to develop an advanced indexing of the library stock. We use iQvoc as a vocabulary management system to create the thesaurus. It provides an easy-to-use browser interface that builds a SKOS thesaurus in the background. The purpose of this is to integrate the thesauri in WILBERT in order to offer a better subject-related search. This approach especially supports first-year students by giving them the possibility to browse through a hierarchical alignment of a subject, for instance, logistics or computer science, and thereby discover how the terms are related. It also supports the students with an insight into established abbreviations and alternative labels. Students at the TUAS Wildau were involved in the developmental process of the software regarding the interface and functionality of iQvoc. The first steps have been taken and involve the inclusion of 3000 terms in our discovery tool WILBERT.
  5. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.011808597 = product of:
      0.059042983 = sum of:
        0.059042983 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
          0.059042983 = score(doc=3355,freq=4.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.32829654 = fieldWeight in 3355, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
      0.2 = coord(1/5)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  6. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.008349938 = product of:
      0.04174969 = sum of:
        0.04174969 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
          0.04174969 = score(doc=3693,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.23214069 = fieldWeight in 3693, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
      0.2 = coord(1/5)
    
    Date
    22. 7.2010 19:36:46
  7. Jäger-Dengler-Harles, I.: Informationsvisualisierung und Retrieval im Fokus der Infromationspraxis (2013) 0.01
    0.008349938 = product of:
      0.04174969 = sum of:
        0.04174969 = weight(_text_:22 in 1709) [ClassicSimilarity], result of:
          0.04174969 = score(doc=1709,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.23214069 = fieldWeight in 1709, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=1709)
      0.2 = coord(1/5)
    
    Date
    4. 2.2015 9:22:39
  8. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.01
    0.006958282 = product of:
      0.03479141 = sum of:
        0.03479141 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
          0.03479141 = score(doc=3070,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.19345059 = fieldWeight in 3070, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3070)
      0.2 = coord(1/5)
    
    Date
    20. 1.2015 18:30:22
  9. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.01
    0.006958282 = product of:
      0.03479141 = sum of:
        0.03479141 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
          0.03479141 = score(doc=4573,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.19345059 = fieldWeight in 4573, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
      0.2 = coord(1/5)
    
    Date
    9.12.2018 16:22:25
  10. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.01
    0.006958282 = product of:
      0.03479141 = sum of:
        0.03479141 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
          0.03479141 = score(doc=4641,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.19345059 = fieldWeight in 4641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4641)
      0.2 = coord(1/5)
    
    Date
    21.12.2018 17:22:13
  11. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.00
    0.004174969 = product of:
      0.020874845 = sum of:
        0.020874845 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
          0.020874845 = score(doc=3035,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.116070345 = fieldWeight in 3035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3035)
      0.2 = coord(1/5)
    
    Content
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.