Search (49 results, page 1 of 3)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Wissensrepräsentation"
  1. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.07
    0.067464456 = product of:
      0.16866113 = sum of:
        0.11995316 = weight(_text_:thesaurus in 4792) [ClassicSimilarity], result of:
          0.11995316 = score(doc=4792,freq=4.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.50543046 = fieldWeight in 4792, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4792)
        0.048707973 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
          0.048707973 = score(doc=4792,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.2708308 = fieldWeight in 4792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4792)
      0.4 = coord(2/5)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  2. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.05
    0.048941944 = product of:
      0.24470972 = sum of:
        0.24470972 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
          0.24470972 = score(doc=400,freq=2.0), product of:
            0.43541256 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.051357865 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.2 = coord(1/5)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  3. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.04
    0.03815076 = product of:
      0.0953769 = sum of:
        0.06058549 = weight(_text_:thesaurus in 1434) [ClassicSimilarity], result of:
          0.06058549 = score(doc=1434,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.2552809 = fieldWeight in 1434, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1434)
        0.03479141 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
          0.03479141 = score(doc=1434,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.19345059 = fieldWeight in 1434, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1434)
      0.4 = coord(2/5)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.03
    0.032627963 = product of:
      0.1631398 = sum of:
        0.1631398 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
          0.1631398 = score(doc=5820,freq=2.0), product of:
            0.43541256 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.051357865 = queryNorm
            0.3746787 = fieldWeight in 5820, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.2 = coord(1/5)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  5. Kless, D.; Milton, S.; Kazmierczak, E.; Lindenthal, J.: Thesaurus and ontology structure : formal and pragmatic differences and similarities (2015) 0.03
    0.029680712 = product of:
      0.14840356 = sum of:
        0.14840356 = weight(_text_:thesaurus in 2036) [ClassicSimilarity], result of:
          0.14840356 = score(doc=2036,freq=12.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.62530804 = fieldWeight in 2036, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2036)
      0.2 = coord(1/5)
    
    Abstract
    Thesauri and other types of controlled vocabularies are increasingly re-engineered into ontologies described using the Web Ontology Language (OWL), particularly in the life sciences. This has led to the perception by some that thesauri are ontologies once they are described by using the syntax of OWL while others have emphasized the need to re-engineer a vocabulary to use it as ontology. This confusion is rooted in different perceptions of what ontologies are and how they differ from other types of vocabularies. In this article, we rigorously examine the structural differences and similarities between thesauri and meaning-defining ontologies described in OWL. Specifically, we conduct (a) a conceptual comparison of thesauri and ontologies, and (b) a comparison of a specific thesaurus and a specific ontology in the same subject field. Our results show that thesauri and ontologies need to be treated as 2 orthogonal kinds of models with superficially similar structures. An ontology is not a good thesaurus, nor is a thesaurus a good ontology. A thesaurus requires significant structural and other content changes to become an ontology, and vice versa.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  6. Amirhosseini, M.: Theoretical base of quantitative evaluation of unity in a thesaurus term network based on Kant's epistemology (2010) 0.03
    0.029680712 = product of:
      0.14840356 = sum of:
        0.14840356 = weight(_text_:thesaurus in 5854) [ClassicSimilarity], result of:
          0.14840356 = score(doc=5854,freq=12.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.62530804 = fieldWeight in 5854, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5854)
      0.2 = coord(1/5)
    
    Abstract
    The quantitative evaluation of thesauri has been carried out much further since 1976. This type of evaluation is based on counting of special factors in thesaurus structure, some of which are counting preferred terms, non preferred terms, cross reference terms and so on. Therefore, various statistical tests have been proposed and applied for evaluation of thesauri. In this article, we try to explain some ratios in the field of unity quantitative evaluation in a thesaurus term network. Theoretical base of the ratios' indicators and indices construction, and epistemological thought in this type of quantitative evaluation, are discussed in this article. The theoretical base of quantitative evaluation is the epistemological thought of Immanuel Kant's Critique of pure reason. The cognition states of transcendental understanding are divided into three steps, the first is perception, the second combination and the third, relation making. Terms relation domains and conceptual relation domains can be analyzed with ratios. The use of quantitative evaluations in current research in the field of thesaurus construction prepares a basis for a restoration period. In modern thesaurus construction, traditional term relations are analyzed in detail in the form of new conceptual relations. Hence, the new domains of hierarchical and associative relations are constructed in the form of relations between concepts. The newly formed conceptual domains can be a suitable basis for quantitative evaluation analysis in conceptual relations.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  7. Schulz, S.; Schober, D.; Tudose, I.; Stenzhorn, H.: ¬The pitfalls of thesaurus ontologization : the case of the NCI thesaurus (2010) 0.03
    0.029081037 = product of:
      0.14540519 = sum of:
        0.14540519 = weight(_text_:thesaurus in 4885) [ClassicSimilarity], result of:
          0.14540519 = score(doc=4885,freq=8.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.61267424 = fieldWeight in 4885, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=4885)
      0.2 = coord(1/5)
    
    Abstract
    Thesauri that are "ontologized" into OWL-DL semantics are highly amenable to modeling errors resulting from falsely interpreting existential restrictions. We investigated the OWL-DL representation of the NCI Thesaurus (NCIT) in order to assess the correctness of existential restrictions. A random sample of 354 axioms using the someValuesFrom operator was taken. According to a rating performed by two domain experts, roughly half of these examples, and in consequence more than 76,000 axioms in the OWL-DL version, make incorrect assertions if interpreted according to description logics semantics. These axioms therefore constitute a huge source for unintended models, rendering most logic-based reasoning unreliable. After identifying typical error patterns we discuss some possible improvements. Our recommendation is to either amend the problematic axioms in the OWL-DL formalization or to consider some less strict representational format.
    Object
    NCI Thesaurus
  8. Maculan, B.C.M. dos; Lima, G.A. de; Oliveira, E.D.: Conversion methods from thesaurus to ontologies : a review (2016) 0.03
    0.027417867 = product of:
      0.13708933 = sum of:
        0.13708933 = weight(_text_:thesaurus in 4695) [ClassicSimilarity], result of:
          0.13708933 = score(doc=4695,freq=4.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.5776348 = fieldWeight in 4695, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0625 = fieldNorm(doc=4695)
      0.2 = coord(1/5)
    
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  9. Amirhosseini, M.: Quantitative evaluation of the movement from complexity toward simplicity in the structure of thesaurus descriptors (2015) 0.03
    0.02709466 = product of:
      0.1354733 = sum of:
        0.1354733 = weight(_text_:thesaurus in 3695) [ClassicSimilarity], result of:
          0.1354733 = score(doc=3695,freq=10.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.5708255 = fieldWeight in 3695, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3695)
      0.2 = coord(1/5)
    
    Abstract
    The concepts of simplicity and complexity play major roles in information storage and retrieval in knowledge organizations. This paper reports an investigation of these concepts in the structure of descriptors. The main purpose of simplicity is to decrease the number of words in the construction of descriptors as this idea affects semantic relations, recall and precision. ISO 25964 has affirmed the purpose of simplicity by requiring splitting compound terms into simpler concepts. This work aims to elaborate the standard methods of evaluation by providing a more detailed evaluation of the descriptors structure and identifying effective factors in simplicity and complexity results in the structure of thesauri descriptors. The research population is taken from the descriptors of the Commonwealth Agricultural Bureaux (CAB) Thesaurus, the Persian Cultural Thesaurus (ASFA) and the Chemical Thesaurus. This research was conducted using the statistical and content analysis method. In this research we propose a new quantitative approach as well as novel indicators and indices involving Simplicity and Factoring Ratios to evaluate the descriptors structure. The results will be useful in the verification, selection and maintenance purposes in knowledge organizations and the inquiry method can be further developed in the field of ontology evaluation.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  10. Ma, X.; Carranza, E.J.M.; Wu, C.; Meer, F.D. van der; Liu, G.: ¬A SKOS-based multilingual thesaurus of geological time scale for interoperability of online geological maps (2011) 0.03
    0.025647065 = product of:
      0.12823533 = sum of:
        0.12823533 = weight(_text_:thesaurus in 4800) [ClassicSimilarity], result of:
          0.12823533 = score(doc=4800,freq=14.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.5403279 = fieldWeight in 4800, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.03125 = fieldNorm(doc=4800)
      0.2 = coord(1/5)
    
    Abstract
    The usefulness of online geological maps is hindered by linguistic barriers. Multilingual geoscience thesauri alleviate linguistic barriers of geological maps. However, the benefits of multilingual geoscience thesauri for online geological maps are less studied. In this regard, we developed a multilingual thesaurus of geological time scale (GTS) to alleviate linguistic barriers of GTS records among online geological maps. We extended the Simple Knowledge Organization System (SKOS) model to represent the ordinal hierarchical structure of GTS terms. We collected GTS terms in seven languages and encoded them into a thesaurus by using the extended SKOS model. We implemented methods of characteristic-oriented term retrieval in JavaScript programs for accessing Web Map Services (WMS), recognizing GTS terms, and making translations. With the developed thesaurus and programs, we set up a pilot system to test recognitions and translations of GTS terms in online geological maps. Results of this pilot system proved the accuracy of the developed thesaurus and the functionality of the developed programs. Therefore, with proper deployments, SKOS-based multilingual geoscience thesauri can be functional for alleviating linguistic barriers among online geological maps and, thus, improving their interoperability.
    Content
    Article Outline 1. Introduction 2. SKOS-based multilingual thesaurus of geological time scale 2.1. Addressing the insufficiency of SKOS in the context of the Semantic Web 2.2. Addressing semantics and syntax/lexicon in multilingual GTS terms 2.3. Extending SKOS model to capture GTS structure 2.4. Summary of building the SKOS-based MLTGTS 3. Recognizing and translating GTS terms retrieved from WMS 4. Pilot system, results, and evaluation 5. Discussion 6. Conclusions Vgl. unter: http://www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271720&_user=3865853&_pii=S0098300411000744&_check=y&_origin=&_coverDate=31-Oct-2011&view=c&wchp=dGLbVlt-zSkzS&_valck=1&md5=e2c1daf53df72d034d22278212578f42&ie=/sdarticle.pdf.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  11. Curras, E.: Ontologies, taxonomy and thesauri in information organisation and retrieval (2010) 0.02
    0.020987432 = product of:
      0.10493716 = sum of:
        0.10493716 = weight(_text_:thesaurus in 3276) [ClassicSimilarity], result of:
          0.10493716 = score(doc=3276,freq=6.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.44215953 = fieldWeight in 3276, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3276)
      0.2 = coord(1/5)
    
    Content
    Inhalt: 1. From classifications to ontologies Knowledge - A new concept of knowledge - Knowledge and information - Knowledge organisation - Knowledge organisation and representation - Cognitive sciences - Talent management - Learning systematisation - Historical evolution - From classification to knowledge organisation - Why ontologies exist - Ontologies - The structure of ontologies 2. Taxonomies and thesauri From ordering to taxonomy - The origins of taxonomy - Hierarchical and horizontal order - Correlation with classifications - Taxonomy in computer science - Computing taxonomy - Definitions - Virtual taxonomy, cybernetic taxonomy - Taxonomy in Information Science - Similarities between taxonomies and thesauri - ifferences between taxonomies and thesauri 3. Thesauri Terminology in classification systems - Terminological languages - Thesauri - Thesauri definitions - Conditions that a thesaurus must fulfil - Historical evolution - Classes of thesauri 4. Thesauri in (cladist) systematics Systematics - Systematics as a noun - Definitions and historic evolution over time - Differences between taxonomy and systematics - Systematics in thesaurus construction theory - Classic, numerical and cladist systematics - Classic systematics in information science - Numerical systematics in information science - Thesauri in cladist systematics - Systematics in information technology - Some examples 5. Thesauri in systems theory Historical evolution - Approach to systems - Systems theory applied to the construction of thesauri - Components - Classes of system - Peculiarities of these systems - Working methods - Systems theory applied to ontologies and taxonomies
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  12. Bold, N.; Kim, W.-J.; Yang, J.-D.: Converting object-based thesauri into XML Topic Maps (2010) 0.02
    0.0205634 = product of:
      0.102817 = sum of:
        0.102817 = weight(_text_:thesaurus in 4799) [ClassicSimilarity], result of:
          0.102817 = score(doc=4799,freq=4.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.4332261 = fieldWeight in 4799, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=4799)
      0.2 = coord(1/5)
    
    Abstract
    Constructing ontology is considerably time consuming process in general. Since there are a vast amount of thesauri currently available, it may be a feasible solution to exploit thesauri, when constructing ontology in a short period of time. This paper designs and implements a XTM (XML Topic Maps) code converter generating XTM coded ontology from an object based thesaurus. It is an extended thesaurus, which enriches the conventional thesauri with user defined associations, a notion of instances and occurrences associated with them. The reason we adopt XTM is that it is a verified and practical methodology to semantically reorganize the conceptual structure of extant web applications with minimal effort. Moreover, since XTM is conceptually similar to our object based thesauri, recommendation and inference mechanism already developed in our system could be easily applied to the generated XTM ontology. To show that the XTM ontology is correct, we also verify it with onto pia Omnigator and Vizigator, the components of Ontopia Knowledge Suite (OKS) tool.
  13. Bandholtz, T.; Schulte-Coerne, T.; Glaser, R.; Fock, J.; Keller, T.: iQvoc - open source SKOS(XL) maintenance and publishing tool (2010) 0.02
    0.01696394 = product of:
      0.0848197 = sum of:
        0.0848197 = weight(_text_:thesaurus in 604) [ClassicSimilarity], result of:
          0.0848197 = score(doc=604,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.3573933 = fieldWeight in 604, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.0546875 = fieldNorm(doc=604)
      0.2 = coord(1/5)
    
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  14. Networked Knowledge Organisation Systems and Services - TPDL 2011 : The 10th European Networked Knowledge Organisation Systems (NKOS) Workshop (2011) 0.01
    0.014540519 = product of:
      0.072702594 = sum of:
        0.072702594 = weight(_text_:thesaurus in 6033) [ClassicSimilarity], result of:
          0.072702594 = score(doc=6033,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.30633712 = fieldWeight in 6033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=6033)
      0.2 = coord(1/5)
    
    Content
    Programm mit Links auf die Präsentationen: Armando Stellato, Ahsan Morshed, Gudrun Johannsen, Yves Jacques, Caterina Caracciolo, Sachit Rajbhandari, Imma Subirats, Johannes Keizer: A Collaborative Framework for Managing and Publishing KOS - Christian Mader, Bernhard Haslhofer: Quality Criteria for Controlled Web Vocabularies - Ahsan Morshed, Benjamin Zapilko, Gudrun Johannsen, Philipp Mayr, Johannes Keizer: Evaluating approaches to automatically match thesauri from different domains for Linked Open Data - Johan De Smedt: SKOS extensions to cover mapping requirements - Mark Tomko: Translating biological data sets Into Linked Data - Daniel Kless: Ontologies and thesauri - similarities and differences - Antoine Isaac, Jacco van Ossenbruggen: Europeana and semantic alignment of vocabularies - Douglas Tudhope: Complementary use of ontologies and (other) KOS - Wilko van Hoek, Brigitte Mathiak, Philipp Mayr, Sascha Schüller: Comparing the accuracy of the semantic similarity provided by the Normalized Google Distance (NGD) and the Search Term Recommender (STR) - Denise Bedford: Selecting and Weighting Semantically Discovered Concepts as Social Tags - Stella Dextre Clarke, Johan De Smedt. ISO 25964-1: a new standard for development of thesauri and exchange of thesaurus data
  15. Kless, D.; Milton, S.: Comparison of thesauri and ontologies from a semiotic perspective (2010) 0.01
    0.014540519 = product of:
      0.072702594 = sum of:
        0.072702594 = weight(_text_:thesaurus in 756) [ClassicSimilarity], result of:
          0.072702594 = score(doc=756,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.30633712 = fieldWeight in 756, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=756)
      0.2 = coord(1/5)
    
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  16. Soergel, D.: Towards a relation ontology for the Semantic Web (2011) 0.01
    0.014540519 = product of:
      0.072702594 = sum of:
        0.072702594 = weight(_text_:thesaurus in 4342) [ClassicSimilarity], result of:
          0.072702594 = score(doc=4342,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.30633712 = fieldWeight in 4342, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=4342)
      0.2 = coord(1/5)
    
    Abstract
    The Semantic Web consists of data structured for use by computer programs, such as data sets made available under the Linked Open Data initiative. Much of this data is structured following the entity-relationship model encoded in RDF for syntactic interoperability. For semantic interoperability, the semantics of the relationships used in any given dataset needs to be made explicit. Ultimately this requires an inventory of these relationships structured around a relation ontology. This talk will outline a blueprint for such an inventory, including a format for the description/definition of binary and n-ary relations, drawing on ideas put forth in the classification and thesaurus community over the last 60 years, upper level ontologies, systems like FrameNet, the Buffalo Relation Ontology, and an analysis of linked data sets.
  17. Amarger, F.; Chanet, J.-P.; Haemmerlé, O.; Hernandez, N.; Roussey, C.: SKOS sources transformations for ontology engineering : agronomical taxonomy use case (2014) 0.01
    0.014540519 = product of:
      0.072702594 = sum of:
        0.072702594 = weight(_text_:thesaurus in 1593) [ClassicSimilarity], result of:
          0.072702594 = score(doc=1593,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.30633712 = fieldWeight in 1593, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=1593)
      0.2 = coord(1/5)
    
    Abstract
    Sources like thesauri or taxonomies are already used as input in ontology development process. Some of them are also published on the LOD using the SKOS format. Reusing this type of sources to build an ontology is not an easy task. The ontology developer has to face different syntax and different modelling goals. We propose in this paper a new methodology to transform several non-ontological sources into a single ontology. We take into account: the redundancy of the knowledge extracted from sources in order to discover the consensual knowledge and Ontology Design Patterns (ODPs) to guide the transformation process. We have evaluated our methodology by creating an ontology on wheat taxonomy from three sources: Agrovoc thesaurus, TaxRef taxonomy, NCBI taxonomy.
  18. Buizza, G.: Subject analysis and indexing : an "Italian version" of the analytico-synthetic model (2011) 0.01
    0.014540519 = product of:
      0.072702594 = sum of:
        0.072702594 = weight(_text_:thesaurus in 1812) [ClassicSimilarity], result of:
          0.072702594 = score(doc=1812,freq=2.0), product of:
            0.23732872 = queryWeight, product of:
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.051357865 = queryNorm
            0.30633712 = fieldWeight in 1812, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6210785 = idf(docFreq=1182, maxDocs=44218)
              0.046875 = fieldNorm(doc=1812)
      0.2 = coord(1/5)
    
    Abstract
    The paper presents the theoretical foundation of Italian indexing system. A consistent integration of vocabulary control through a thesaurus (semantics) and of role analysis to construct subject strings (syntax) allows to represent the full theme of a work, even if complex, in one string. The conceptual model produces a binary scheme: each aspect (entities, relationships, etc.) consists of a couple of elements, drawing the two lines of semantics and syntax. The meaning of 'concept' and 'theme' is analysed, also in comparison with the FRBR and FRSAD models, with the proposal of an en riched model. A double existence of concepts is suggested: document-independent adn document-dependent.
  19. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.013916564 = product of:
      0.06958282 = sum of:
        0.06958282 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
          0.06958282 = score(doc=5576,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.38690117 = fieldWeight in 5576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=5576)
      0.2 = coord(1/5)
    
    Date
    13.12.2017 14:17:22
  20. Nielsen, M.: Neuronale Netze : Alpha Go - Computer lernen Intuition (2018) 0.01
    0.013916564 = product of:
      0.06958282 = sum of:
        0.06958282 = weight(_text_:22 in 4523) [ClassicSimilarity], result of:
          0.06958282 = score(doc=4523,freq=2.0), product of:
            0.1798465 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.051357865 = queryNorm
            0.38690117 = fieldWeight in 4523, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.078125 = fieldNorm(doc=4523)
      0.2 = coord(1/5)
    
    Source
    Spektrum der Wissenschaft. 2018, H.1, S.22-27

Authors

Languages

  • e 43
  • d 6

Types

  • a 40
  • el 9
  • m 3
  • x 3
  • r 1
  • More… Less…