Search (211 results, page 1 of 11)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.11
    0.10639735 = product of:
      0.15959603 = sum of:
        0.075830564 = weight(_text_:index in 2282) [ClassicSimilarity], result of:
          0.075830564 = score(doc=2282,freq=4.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.3413878 = fieldWeight in 2282, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2282)
        0.08376546 = sum of:
          0.049330197 = weight(_text_:classification in 2282) [ClassicSimilarity], result of:
            0.049330197 = score(doc=2282,freq=6.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.3047229 = fieldWeight in 2282, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2282)
          0.03443526 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
            0.03443526 = score(doc=2282,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.19345059 = fieldWeight in 2282, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2282)
      0.6666667 = coord(2/3)
    
    Abstract
    The structure of a classification system contributes in a variety of ways to representing semantic relationships between its topics in the context of subject authority control. We explore this claim using the Dewey Decimal Classification (DDC) system as a case study. The DDC links its classes into a notational hierarchy, supplemented by a network of relationships between topics, expressed in class descriptions and in the Relative Index (RI). Topics/subjects are expressed both by the natural language text of the caption and notes (including Manual notes) in a class description and by the controlled vocabulary of the RI's alphabetic index, which shows where topics are treated in the classificatory structure. The expression of relationships between topics depends on paradigmatic and syntagmatic relationships between natural language terms in captions, notes, and RI terms; on the meaning of specific note types; and on references recorded between RI terms. The specific means used in the DDC for capturing hierarchical (including disciplinary), equivalence and associative relationships are surveyed.
    Date
    8.11.2015 21:27:22
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
  2. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.10
    0.09904002 = product of:
      0.14856002 = sum of:
        0.13134238 = weight(_text_:index in 1418) [ClassicSimilarity], result of:
          0.13134238 = score(doc=1418,freq=12.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.591301 = fieldWeight in 1418, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.01721763 = product of:
          0.03443526 = sum of:
            0.03443526 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.03443526 = score(doc=1418,freq=2.0), product of:
                0.17800546 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05083213 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Buchanan, B.: Theory of library classification (1979) 0.09
    0.09440216 = product of:
      0.14160323 = sum of:
        0.08579248 = weight(_text_:index in 641) [ClassicSimilarity], result of:
          0.08579248 = score(doc=641,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.3862362 = fieldWeight in 641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0625 = fieldNorm(doc=641)
        0.055810746 = product of:
          0.11162149 = sum of:
            0.11162149 = weight(_text_:classification in 641) [ClassicSimilarity], result of:
              0.11162149 = score(doc=641,freq=12.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.6895092 = fieldWeight in 641, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=641)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Inhalt: Classification: definition and uses - The relationships between classes - Enumerative and faceted schemes - Decisions - The construction of a faceted scheme: I - The construction of a faceted scheme: II - Notation: I - Notation: II - Notation: III - The alphabetical subject index - General classification schemes - Objections to systematic order - Automatic classification
    LCSH
    Classification / Books
    Subject
    Classification / Books
  4. Kochar, R.S.: Library classification systems (1998) 0.09
    0.09207558 = product of:
      0.13811336 = sum of:
        0.07506842 = weight(_text_:index in 931) [ClassicSimilarity], result of:
          0.07506842 = score(doc=931,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.33795667 = fieldWeight in 931, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0546875 = fieldNorm(doc=931)
        0.06304494 = product of:
          0.12608989 = sum of:
            0.12608989 = weight(_text_:classification in 931) [ClassicSimilarity], result of:
              0.12608989 = score(doc=931,freq=20.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.7788835 = fieldWeight in 931, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=931)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Library classification traces the origins of the subject and leads an to the latest developments in it. This user-friendly text explains concepts through analogies, diagrams, and tables. The fundamental but important topics an terminology of classification has been uniquely explained. The book deals with the recent trends in the use of computers in cataloguing including on-line systems, artificial intelligence systems etc. With its up-to-date and comprehensive coverage the book will serve as a degree students of Library and Information Science and also prove to be invaluable reference material to professionals and researchers.
    Content
    Contents: Preface. 1. Classification systems. 2. Automatic classification. 3. Knowledge classification. 4. Reflections on library classification. 5. General classification schemes. 6. Hierarchical classification. 7. Faceted classification. B. Present methods and future directions. Index.
  5. Slavic, A.; Cordeiro, M.I.: Core requirements for automation of analytico-synthetic classifications (2004) 0.07
    0.070801616 = product of:
      0.10620242 = sum of:
        0.06434436 = weight(_text_:index in 2651) [ClassicSimilarity], result of:
          0.06434436 = score(doc=2651,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.28967714 = fieldWeight in 2651, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=2651)
        0.041858062 = product of:
          0.083716124 = sum of:
            0.083716124 = weight(_text_:classification in 2651) [ClassicSimilarity], result of:
              0.083716124 = score(doc=2651,freq=12.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.5171319 = fieldWeight in 2651, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2651)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The paper analyses the importance of data presentation and modelling and its role in improving the management, use and exchange of analytico-synthetic classifications in automated systems. Inefficiencies, in this respect, hinder the automation of classification systems that offer the possibility of building compound index/search terms. The lack of machine readable data expressing the semantics and structure of a classification vocabulary has negative effects on information management and retrieval, thus restricting the potential of both automated systems and classifications themselves. The authors analysed the data representation structure of three general analytico-synthetic classification systems (BC2-Bliss Bibliographic Classification; BSO-Broad System of Ordering; UDC-Universal Decimal Classification) and put forward some core requirements for classification data representation
  6. Green, R.; Panzer, M.: ¬The ontological character of classes in the Dewey Decimal Classification 0.07
    0.06884199 = product of:
      0.103262976 = sum of:
        0.07506842 = weight(_text_:index in 3530) [ClassicSimilarity], result of:
          0.07506842 = score(doc=3530,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.33795667 = fieldWeight in 3530, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3530)
        0.028194554 = product of:
          0.05638911 = sum of:
            0.05638911 = weight(_text_:classification in 3530) [ClassicSimilarity], result of:
              0.05638911 = score(doc=3530,freq=4.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.34832728 = fieldWeight in 3530, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3530)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Classes in the Dewey Decimal Classification (DDC) system function as neighborhoods around focal topics in captions and notes. Topical neighborhoods are generated through specialization and instantiation, complex topic synthesis, index terms and mapped headings, hierarchical force, rules for choosing between numbers, development of the DDC over time, and use of the system in classifying resources. Implications of representation using a formal knowledge representation language are explored.
  7. Farradane, J.E.L.: ¬A scientific theory of classification and indexing and its practical applications (1950) 0.07
    0.068370245 = product of:
      0.102555364 = sum of:
        0.06434436 = weight(_text_:index in 1654) [ClassicSimilarity], result of:
          0.06434436 = score(doc=1654,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.28967714 = fieldWeight in 1654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=1654)
        0.038211007 = product of:
          0.07642201 = sum of:
            0.07642201 = weight(_text_:classification in 1654) [ClassicSimilarity], result of:
              0.07642201 = score(doc=1654,freq=10.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.4720747 = fieldWeight in 1654, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1654)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A classification is a theory of the structure of knowledge. From a discussion of the nature of truth, it is held that scientific knowledge is the only knowledge which can be regarded as true. The method of induction from empirical data is therefore applied to the construction of a classification. Items of knowledge are divided into uniquely definable terms, called isolates, and the relations between them, called operators. It is shown that only four basic operators exist, expressing appurtenance, equivalence, reaction and causation; using symbols for these operators, all subjects can be analysed in a linear form called an analet. With the addition of the permissible permutations of such analets, formed according to simple rules, alphabetical arrangement of the first terms provide a complete, logical subject index. Examples are given, and possible difficulties are considered. A classification can then be constructed by selection of deductive relations, arranged in hierarchical form. The nature of possible classifications is discussed. It is claimed that such an inductively constructed classification is the only true representation of the structure of knowledge, and that these principles provide a simple technique for accurately and fully indexing and classifying any given set of data, with complete flexibility
  8. Vickery, B.C.: Systematic subject indexing (1985) 0.06
    0.061924532 = product of:
      0.0928868 = sum of:
        0.06066445 = weight(_text_:index in 3636) [ClassicSimilarity], result of:
          0.06066445 = score(doc=3636,freq=4.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.27311024 = fieldWeight in 3636, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=3636)
        0.03222235 = product of:
          0.0644447 = sum of:
            0.0644447 = weight(_text_:classification in 3636) [ClassicSimilarity], result of:
              0.0644447 = score(doc=3636,freq=16.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.39808834 = fieldWeight in 3636, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3636)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Brian C. Vickery, Director and Professor, School of Library, Archive and Information Studies, University College, London, is a prolific writer on classification and information retrieval. This paper was one of the earliest to present initial efforts by the Classification Research Group (q.v.). In it he clearly outlined the need for classification in subject indexing, which, at the time he wrote, was not a commonplace understanding. In fact, some indexing systems were made in the first place specifically to avoid general classification systems which were out of date in all fast-moving disciplines, especially in the "hard" sciences. Vickery picked up Julia Pettee's work (q.v.) an the concealed classification in subject headings (1947) and added to it, mainly adopting concepts from the work of S. R. Ranganathan (q.v.). He had already published a paper an notation in classification, pointing out connections between notation, words, and the concepts which they represent. He was especially concerned about the structure of notational symbols as such symbols represented relationships among subjects. Vickery also emphasized that index terms cover all aspects of a subject so that, in addition to having a basis in classification, the ideal index system should also have standardized nomenclature, as weIl as show evidence of a systematic classing of elementary terms. The necessary linkage between system and terms should be one of a number of methods, notably:
    - adding a relational term ("operator") to identify and join terms; - indicating grammatical case with terms where this would help clarify relationships; and - analyzing elementary terms to reveal fundamental categories where needed. He further added that a standard order for showing relational factors was highly desirable. Eventually, some years later, he was able to suggest such an order. This was accepted by his peers in the Classification Research Group, and utilized by Derek Austin in PRECIS (q.v.). Vickery began where Farradane began - with perception (a sound base according to current cognitive psychology). From this came further recognition of properties, parts, constituents, organs, effects, reactions, operations (physical and mental), added to the original "identity," "difference," "class membership," and "species." By defining categories more carefully, Vickery arrived at six (in addition to space (geographic) and time): - personality, thing, substance (e.g., dog, bicycle, rose) - part (e.g., paw, wheel, leaf) - substance (e.g., copper, water, butter) - action (e.g., scattering) - property (e.g., length, velocity) - operation (e.g., analysis, measurement) Thus, as early as 1953, the foundations were already laid for research that ultimately produced very sophisticated systems, such as PRECIS.
  9. Classification research for knowledge representation and organization : Proc. of the 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991 (1992) 0.06
    0.06153138 = product of:
      0.09229707 = sum of:
        0.045498334 = weight(_text_:index in 2072) [ClassicSimilarity], result of:
          0.045498334 = score(doc=2072,freq=4.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.20483267 = fieldWeight in 2072, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
        0.046798736 = product of:
          0.09359747 = sum of:
            0.09359747 = weight(_text_:classification in 2072) [ClassicSimilarity], result of:
              0.09359747 = score(doc=2072,freq=60.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.5781711 = fieldWeight in 2072, product of:
                  7.745967 = tf(freq=60.0), with freq of:
                    60.0 = termFreq=60.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2072)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This volume deals with both theoretical and empirical research in classification and encompasses universal classification systems, special classification systems, thesauri and the place of classification in a broad spectrum of document and information systems. Papers fall into one or three major areas as follows: 1) general principles and policies 2) structure and logic in classification; and empirical investigation; classification in the design of various types of document/information systems. The papers originate from the ISCCR '91 conference and have been selected according to the following criteria: relevance to the conference theme; importance of the topic in the representation and organization of knowledge; quality; and originality in terms of potential contribution to research and new knowledge.
    Content
    Enthält die Beiträge: SVENONIUS, E.: Classification: prospects, problems, and possibilities; BEALL, J.: Editing the Dewey Decimal Classification online: the evolution of the DDC database; BEGHTOL, C.: Toward a theory of fiction analysis for information storage and retrieval; CRAVEN, T.C.: Concept relation structures and their graphic display; FUGMANN, R.: Illusory goals in information science research; GILCHRIST, A.: UDC: the 1990's and beyond; GREEN, R.: The expression of syntagmatic relationships in indexing: are frame-based index languages the answer?; HUMPHREY, S.M.: Use and management of classification systems for knowledge-based indexing; MIKSA, F.L.: The concept of the universe of knowledge and the purpose of LIS classification; SCOTT, M. u. A.F. FONSECA: Methodology for functional appraisal of records and creation of a functional thesaurus; ALBRECHTSEN, H.: PRESS: a thesaurus-based information system for software reuse; AMAESHI, B.: A preliminary AAT compatible African art thesaurus; CHATTERJEE, A.: Structures of Indian classification systems of the pre-Ranganathan era and their impact on the Colon Classification; COCHRANE, P.A.: Indexing and searching thesauri, the Janus or Proteus of information retrieval; CRAVEN, T.C.: A general versus a special algorithm in the graphic display of thesauri; DAHLBERG, I.: The basis of a new universal classification system seen from a philosophy of science point of view: DRABENSTOTT, K.M., RIESTER, L.C. u. B.A.DEDE: Shelflisting using expert systems; FIDEL, R.: Thesaurus requirements for an intermediary expert system; GREEN, R.: Insights into classification from the cognitive sciences: ramifications for index languages; GROLIER, E. de: Towards a syndetic information retrieval system; GUENTHER, R.: The USMARC format for classification data: development and implementation; HOWARTH, L.C.: Factors influencing policies for the adoption and integration of revisions to classification schedules; HUDON, M.: Term definitions in subject thesauri: the Canadian literacy thesaurus experience; HUSAIN, S.: Notational techniques for the accomodation of subjects in Colon Classification 7th edition: theoretical possibility vis-à-vis practical need; KWASNIK, B.H. u. C. JORGERSEN: The exploration by means of repertory grids of semantic differences among names of official documents; MICCO, M.: Suggestions for automating the Library of Congress Classification schedules; PERREAULT, J.M.: An essay on the prehistory of general categories (II): G.W. Leibniz, Conrad Gesner; REES-POTTER, L.K.: How well do thesauri serve the social sciences?; REVIE, C.W. u. G. SMART: The construction and the use of faceted classification schema in technical domains; ROCKMORE, M.: Structuring a flexible faceted thsaurus record for corporate information retrieval; ROULIN, C.: Sub-thesauri as part of a metathesaurus; SMITH, L.C.: UNISIST revisited: compatibility in the context of collaboratories; STILES, W.G.: Notes concerning the use chain indexing as a possible means of simulating the inductive leap within artificial intelligence; SVENONIUS, E., LIU, S. u. B. SUBRAHMANYAM: Automation in chain indexing; TURNER, J.: Structure in data in the Stockshot database at the National Film Board of Canada; VIZINE-GOETZ, D.: The Dewey Decimal Classification as an online classification tool; WILLIAMSON, N.J.: Restructuring UDC: problems and possibilies; WILSON, A.: The hierarchy of belief: ideological tendentiousness in universal classification; WILSON, B.F.: An evaluation of the systematic botany schedule of the Universal Decimal Classification (English full edition, 1979); ZENG, L.: Research and development of classification and thesauri in China; CONFERENCE SUMMARY AND CONCLUSIONS
    Footnote
    Rez. in: International classification 19(1992) no.4, S.228-229 (B.C. Vickery); Journal of classification 11(1994) no.2, S.255-256 (W. Gödert)
    LCSH
    Classification / Congresses
    Subject
    Classification / Congresses
  10. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.06
    0.059770554 = product of:
      0.17931166 = sum of:
        0.17931166 = sum of:
          0.09666705 = weight(_text_:classification in 3176) [ClassicSimilarity], result of:
            0.09666705 = score(doc=3176,freq=4.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.5971325 = fieldWeight in 3176, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.09375 = fieldNorm(doc=3176)
          0.08264462 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
            0.08264462 = score(doc=3176,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.46428138 = fieldWeight in 3176, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=3176)
      0.33333334 = coord(1/3)
    
    Date
    6. 5.2017 18:46:22
    Source
    International classification. 7(1980) no.1, p.2-5
  11. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.06
    0.058553807 = product of:
      0.17566141 = sum of:
        0.17566141 = sum of:
          0.120565 = weight(_text_:classification in 7242) [ClassicSimilarity], result of:
            0.120565 = score(doc=7242,freq=14.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.7447551 = fieldWeight in 7242, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
          0.055096414 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
            0.055096414 = score(doc=7242,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.30952093 = fieldWeight in 7242, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports results of a comparative study of 3 classification schemes: LCC, DDC and NLM Classification to determine their effectiveness in classifying materials on health insurance. Examined 2 hypotheses: that there would be no differences in the scatter of the 3 classification schemes; and that there would be overlap between all 3 schemes but no difference in the classes into which the subject was placed. There was subject scatter in all 3 classification schemes and litlle overlap between the 3 systems
    Date
    22. 4.1997 21:10:19
    Object
    NLM Classification
    Source
    Cataloging and classification quarterly. 23(1996) no.2, S.89-104
  12. Hjoerland, B.: ¬The methodology of constructing classification schemes : a discussion of the state-of-the-art (2003) 0.05
    0.054906934 = product of:
      0.0823604 = sum of:
        0.04289624 = weight(_text_:index in 2760) [ClassicSimilarity], result of:
          0.04289624 = score(doc=2760,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.1931181 = fieldWeight in 2760, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=2760)
        0.03946416 = product of:
          0.07892832 = sum of:
            0.07892832 = weight(_text_:classification in 2760) [ClassicSimilarity], result of:
              0.07892832 = score(doc=2760,freq=24.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.48755667 = fieldWeight in 2760, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Special classifications have been somewhat neglected in KO compared to general classifications. The methodology of constructing special classifications is important, however, also for the methodology of constructing general classification schemes. The methodology of constructing special classifications can be regarded as one among about a dozen approaches to domain analysis. The methodology of (special) classification in LIS has been dominated by the rationalistic facet-analytic tradition, which, however, neglects the question of the empirical basis of classification. The empirical basis is much better grasped by, for example, bibliometric methods. Even the combination of rational and empirical methods is insufficient. This presentation will provide evidence for the necessity of historical and pragmatic methods for the methodology of classification and will point to the necessity of analyzing "paradigms". The presentation covers the methods of constructing classifications from Ranganathan to the design of ontologies in computer science and further to the recent "paradigm shift" in classification research. 1. Introduction Classification of a subject field is one among about eleven approaches to analyzing a domain that are specific for information science and in my opinion define the special competencies of information specialists (Hjoerland, 2002a). Classification and knowledge organization are commonly regarded as core qualifications of librarians and information specialists. Seen from this perspective one expects a firm methodological basis for the field. This paper tries to explore the state-of-the-art conceming the methodology of classification. 2. Classification: Science or non-science? As it is part of the curriculum at universities and subject in scientific journals and conferences like ISKO, orte expects classification/knowledge organization to be a scientific or scholarly activity and a scientific field. However, very often when information specialists classify or index documents and when they revise classification system, the methods seem to be rather ad hoc. Research libraries or scientific databases may employ people with adequate subject knowledge. When information scientists construct or evaluate systems, they very often elicit the knowledge from "experts" (Hjorland, 2002b, p. 260). Mostly no specific arguments are provided for the specific decisions in these processes.
  13. Khanna, J.K.: Analytico-synthetic classification : (a study in CC-7) (1994) 0.05
    0.054906934 = product of:
      0.0823604 = sum of:
        0.04289624 = weight(_text_:index in 1471) [ClassicSimilarity], result of:
          0.04289624 = score(doc=1471,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.1931181 = fieldWeight in 1471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=1471)
        0.03946416 = product of:
          0.07892832 = sum of:
            0.07892832 = weight(_text_:classification in 1471) [ClassicSimilarity], result of:
              0.07892832 = score(doc=1471,freq=24.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.48755667 = fieldWeight in 1471, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1471)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    ANALYTICO-SYNTHETIC CLASSIFICATION- the brain-child of S.R. Ranganathan has brought about an intellectual revolution in the theory and methodology of library classification by generating new ideas. By his vast erudition and deeper research in the Universe of Subjects, Ranganathan applied a postulation approach to classification based on the concept of facet analysis, Phase Analysis, Sector Analysis and Zone Analysis. His enquiry into the concept of fundamental Categories as well as the Analytico-Synthetic quality associated with it, the use of different connecting symbols as in the Meccano apparatus for constructing expressive class numbers for subjects of any depth, the versality of Notation, the analysis of Rounds and Levels, the formation and sharpening of Isolates through various devices, the introduction of the novel concepts of Specals, Systems, Speciators, and Environment Constituents has systematized the whole study of classification into principles, rules and canons. These new methodologies in classification invented as a part of Colon Classification have not only lifted practical classification form mere guess work to scientific methodology but also form an important theme in international conferences. The present work discusses in details the unique methodologies of Ranganathan as used in CC-7. The concepts of Primary Basic Subjects and Non -Primary Basic Subjects have also been discussed at length.
    Content
    Inhalt: 1. Species of Clasification 2. The Making of an Analytico -Synthetic Classification 3. Analytico -Synthetic Classification 4. Basic Subject 5. Primary Basic Subject 6. Non-Primary Basic Subject 7. Notation 8. Fundamental Categories 9. Rounds and Lvels 10. Facet Analyysis and Facet Sequence 11. Phase Realtion 12. Devices in Colon Classification 13. Common Isolates 14. Spece Isolates 15. Lnaguage Isolates 16. Time Isolates 17. Call Number-Class Numbers-Book Number 18. Ranganathan's nfluence on International Classification Thought 19. Alphabetical Index to the Schedule of Basic Subjects
  14. Maniez, J.: ¬Des classifications aux thesaurus : du bon usage des facettes (1999) 0.05
    0.05033285 = product of:
      0.15099855 = sum of:
        0.15099855 = sum of:
          0.06835393 = weight(_text_:classification in 6404) [ClassicSimilarity], result of:
            0.06835393 = score(doc=6404,freq=2.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.42223644 = fieldWeight in 6404, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.09375 = fieldNorm(doc=6404)
          0.08264462 = weight(_text_:22 in 6404) [ClassicSimilarity], result of:
            0.08264462 = score(doc=6404,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.46428138 = fieldWeight in 6404, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=6404)
      0.33333334 = coord(1/3)
    
    Date
    1. 8.1996 22:01:00
    Footnote
    Übers. d. Titels: From classification to thesauri: making good use of facets
  15. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.05
    0.049799785 = product of:
      0.14939936 = sum of:
        0.14939936 = sum of:
          0.10807705 = weight(_text_:classification in 2945) [ClassicSimilarity], result of:
            0.10807705 = score(doc=2945,freq=20.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.66761446 = fieldWeight in 2945, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.046875 = fieldNorm(doc=2945)
          0.04132231 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
            0.04132231 = score(doc=2945,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.23214069 = fieldWeight in 2945, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2945)
      0.33333334 = coord(1/3)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  16. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.04
    0.044674914 = product of:
      0.13402474 = sum of:
        0.13402474 = sum of:
          0.07892832 = weight(_text_:classification in 5083) [ClassicSimilarity], result of:
            0.07892832 = score(doc=5083,freq=6.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.48755667 = fieldWeight in 5083, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0625 = fieldNorm(doc=5083)
          0.055096414 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
            0.055096414 = score(doc=5083,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.30952093 = fieldWeight in 5083, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5083)
      0.33333334 = coord(1/3)
    
    Abstract
    The concept of faceted classification has its long history and importance in the human civilization. Recently, more and more consumer Web sites adopt the idea of facet analysis to organize and display their products or services. The aim of this article is to review the origin and develpment of faceted classification, as well as its concepts, essence, advantage and limitation. Further, the applications of faceted classification in various domians have been explored.
    Date
    27. 5.2007 22:19:35
  17. Broughton, V.: Essential classification (2004) 0.04
    0.04296879 = product of:
      0.064453185 = sum of:
        0.02144812 = weight(_text_:index in 2824) [ClassicSimilarity], result of:
          0.02144812 = score(doc=2824,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.09655905 = fieldWeight in 2824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
        0.043005068 = product of:
          0.086010136 = sum of:
            0.086010136 = weight(_text_:classification in 2824) [ClassicSimilarity], result of:
              0.086010136 = score(doc=2824,freq=114.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.5313025 = fieldWeight in 2824, product of:
                  10.677078 = tf(freq=114.0), with freq of:
                    114.0 = termFreq=114.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Classification is a crucial skill for all information workers involved in organizing collections, but it is a difficult concept to grasp - and is even more difficult to put into practice. Essential Classification offers full guidance an how to go about classifying a document from scratch. This much-needed text leads the novice classifier step by step through the basics of subject cataloguing, with an emphasis an practical document analysis and classification. It deals with fundamental questions of the purpose of classification in different situations, and the needs and expectations of end users. The novice is introduced to the ways in which document content can be assessed, and how this can best be expressed for translation into the language of specific indexing and classification systems. The characteristics of the major general schemes of classification are discussed, together with their suitability for different classification needs.
    Footnote
    Rez. in: KO 32(2005) no.1, S.47-49 (M. Hudon): "Vanda Broughton's Essential Classification is the most recent addition to a very small set of classification textbooks published over the past few years. The book's 21 chapters are based very closely an the cataloguing and classification module at the School of Library, Archive, and Information studies at University College, London. The author's main objective is clear: this is "first and foremost a book about how to classify. The emphasis throughout is an the activity of classification rather than the theory, the practical problems of the organization of collections, and the needs of the users" (p. 1). This is not a theoretical work, but a basic course in classification and classification scheme application. For this reviewer, who also teaches "Classification 101," this is also a fascinating peek into how a colleague organizes content and structures her course. "Classification is everywhere" (p. 1): the first sentence of this book is also one of the first statements in my own course, and Professor Broughton's metaphors - the supermarket, canned peas, flowers, etc. - are those that are used by our colleagues around the world. The combination of tone, writing style and content display are reader-friendly; they are in fact what make this book remarkable and what distinguishes it from more "formal" textbooks, such as The Organization of Information, the superb text written and recently updated (2004) by Professor Arlene Taylor (2nd ed. Westport, Conn.: Libraries Unlimited, 2004). Reading Essential Classification, at times, feels like being in a classroom, facing a teacher who assures you that "you don't need to worry about this at this stage" (p. 104), and reassures you that, although you now speed a long time looking for things, "you will soon speed up when you get to know the scheme better" (p. 137). This teacher uses redundancy in a productive fashion, and she is not afraid to express her own opinions ("I think that if these concepts are helpful they may be used" (p. 245); "It's annoying that LCC doesn't provide clearer instructions, but if you keep your head and take them one step at a time [i.e. the tables] they're fairly straightforward" (p. 174)). Chapters 1 to 7 present the essential theoretical concepts relating to knowledge organization and to bibliographic classification. The author is adept at making and explaining distinctions: known-item retrieval versus subject retrieval, personal versus public/shared/official classification systems, scientific versus folk classification systems, object versus aspect classification systems, semantic versus syntactic relationships, and so on. Chapters 8 and 9 discuss the practice of classification, through content analysis and subject description. A short discussion of difficult subjects, namely the treatment of unique concepts (persons, places, etc.) as subjects seems a little advanced for a beginners' class.
    In Chapter 10, "Controlled indexing languages," Professor Broughton states that a classification scheme is truly a language "since it permits communication and the exchange of information" (p. 89), a Statement with which this reviewer wholly agrees. Chapter 11, however, "Word-based approaches to retrieval," moves us to a different field altogether, offering only a narrow view of the whole world of controlled indexing languages such as thesauri, and presenting disconnected discussions of alphabetical filing, form and structure of subject headings, modern developments in alphabetical subject indexing, etc. Chapters 12 and 13 focus an the Library of Congress Subject Headings (LCSH), without even a passing reference to existing subject headings lists in other languages (French RAMEAU, German SWK, etc.). If it is not surprising to see a section on subject headings in a book on classification, the two subjects being taught together in most library schools, the location of this section in the middle of this particular book is more difficult to understand. Chapter 14 brings the reader back to classification, for a discussion of essentials of classification scheme application. The following five chapters present in turn each one of the three major and currently used bibliographic classification schemes, in order of increasing complexity and difficulty of application. The Library of Congress Classification (LCC), the easiest to use, is covered in chapters 15 and 16. The Dewey Decimal Classification (DDC) deserves only a one-chapter treatment (Chapter 17), while the functionalities of the Universal Decimal Classification (UDC), which Professor Broughton knows extremely well, are described in chapters 18 and 19. Chapter 20 is a general discussion of faceted classification, on par with the first seven chapters for its theoretical content. Chapter 21, an interesting last chapter on managing classification, addresses down-to-earth matters such as the cost of classification, the need for re-classification, advantages and disadvantages of using print versions or e-versions of classification schemes, choice of classification scheme, general versus special scheme. But although the questions are interesting, the chapter provides only a very general overview of what appropriate answers might be. To facilitate reading and learning, summaries are strategically located at various places in the text, and always before switching to a related subject. Professor Broughton's choice of examples is always interesting, and sometimes even entertaining (see for example "Inside out: A brief history of underwear" (p. 71)). With many examples, however, and particularly those that appear in the five chapters an classification scheme applications, the novice reader would have benefited from more detailed explanations. On page 221, for example, "The history and social influence of the potato" results in this analysis of concepts: Potato - Sociology, and in the UDC class number: 635.21:316. What happened to the "history" aspect? Some examples are not very convincing: in Animals RT Reproduction and Art RT Reproduction (p. 102), the associative relationship is not appropriate as it is used to distinguish homographs and would do nothing to help either the indexer or the user at the retrieval stage.
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."
  18. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.04
    0.042651873 = product of:
      0.12795562 = sum of:
        0.12795562 = sum of:
          0.07974625 = weight(_text_:classification in 7241) [ClassicSimilarity], result of:
            0.07974625 = score(doc=7241,freq=8.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.49260917 = fieldWeight in 7241, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0546875 = fieldNorm(doc=7241)
          0.04820936 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
            0.04820936 = score(doc=7241,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.2708308 = fieldWeight in 7241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=7241)
      0.33333334 = coord(1/3)
    
    Abstract
    Discusses the reasons for the decision, taken at Florida International University Library to develop an in house classification system for their local documents collections. Reviews the structures of existing classification systems, noting their strengths and weaknesses in relation to the development of an in house system and describes the 5 components of the new system; geography, subject categories, extensions for population group and/or function, extensions for type of publication, and title/series designator
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
  19. Molholt, P.: Qualities of classification schemes for the Information Superhighway (1995) 0.04
    0.041499823 = product of:
      0.12449947 = sum of:
        0.12449947 = sum of:
          0.090064205 = weight(_text_:classification in 5562) [ClassicSimilarity], result of:
            0.090064205 = score(doc=5562,freq=20.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.55634534 = fieldWeight in 5562, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5562)
          0.03443526 = weight(_text_:22 in 5562) [ClassicSimilarity], result of:
            0.03443526 = score(doc=5562,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.19345059 = fieldWeight in 5562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5562)
      0.33333334 = coord(1/3)
    
    Abstract
    For my segment of this program I'd like to focus on some basic qualities of classification schemes. These qualities are critical to our ability to truly organize knowledge for access. As I see it, there are at least five qualities of note. The first one of these properties that I want to talk about is "authoritative." By this I mean standardized, but I mean more than standardized with a built in consensus-building process. A classification scheme constructed by a collaborative, consensus-building process carries the approval, and the authority, of the discipline groups that contribute to it and that it affects... The next property of classification systems is "expandable," living, responsive, with a clear locus of responsibility for its continuous upkeep. The worst thing you can do with a thesaurus, or a classification scheme, is to finish it. You can't ever finish it because it reflects ongoing intellectual activity... The third property is "intuitive." That is, the system has to be approachable, it has to be transparent, or at least capable of being transparent. It has to have an underlying logic that supports the classification scheme but doesn't dominate it... The fourth property is "organized and logical." I advocate very strongly, and agree with Lois Chan, that classification must be based on a rule-based structure, on somebody's world-view of the syndetic structure... The fifth property is "universal" by which I mean the classification scheme needs be useable by any specific system or application, and be available as a language for multiple purposes.
    Footnote
    Paper presented at the 36th Allerton Institute, 23-25 Oct 94, Allerton Park, Monticello, IL: "New Roles for Classification in Libraries and Information Networks: Presentation and Reports"
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.19-22
  20. Belayche, C.: ¬A propos de la classification de Dewey (1997) 0.04
    0.03984704 = product of:
      0.11954111 = sum of:
        0.11954111 = sum of:
          0.0644447 = weight(_text_:classification in 1171) [ClassicSimilarity], result of:
            0.0644447 = score(doc=1171,freq=4.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.39808834 = fieldWeight in 1171, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0625 = fieldNorm(doc=1171)
          0.055096414 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
            0.055096414 = score(doc=1171,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.30952093 = fieldWeight in 1171, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1171)
      0.33333334 = coord(1/3)
    
    Footnote
    Übers. des Titels: Concerning the Dewey classification
    Source
    Bulletin d'informations de l'Association des Bibliothecaires Francais. 1997, no.175, S.22-23

Authors

Languages

Types

  • a 180
  • m 24
  • el 10
  • s 4
  • b 2
  • n 1
  • More… Less…