Search (150 results, page 1 of 8)

  • × theme_ss:"Wissensrepräsentation"
  1. Green, R.: Relationships in the Dewey Decimal Classification (DDC) : plan of study (2008) 0.11
    0.1142544 = product of:
      0.1713816 = sum of:
        0.14859696 = weight(_text_:index in 3397) [ClassicSimilarity], result of:
          0.14859696 = score(doc=3397,freq=6.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.6689808 = fieldWeight in 3397, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0625 = fieldNorm(doc=3397)
        0.022784641 = product of:
          0.045569282 = sum of:
            0.045569282 = weight(_text_:classification in 3397) [ClassicSimilarity], result of:
              0.045569282 = score(doc=3397,freq=2.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.28149095 = fieldWeight in 3397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3397)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    EPC Exhibit 129-36.1 presented intermediate results of a project to connect Relative Index terms to topics associated with classes and to determine if those Relative Index terms approximated the whole of the corresponding class or were in standing room in the class. The Relative Index project constitutes the first stage of a long(er)-term project to instill a more systematic treatment of relationships within the DDC. The present exhibit sets out a plan of study for that long-term project.
  2. Green, R.; Panzer, M.: ¬The ontological character of classes in the Dewey Decimal Classification 0.07
    0.06884199 = product of:
      0.103262976 = sum of:
        0.07506842 = weight(_text_:index in 3530) [ClassicSimilarity], result of:
          0.07506842 = score(doc=3530,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.33795667 = fieldWeight in 3530, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3530)
        0.028194554 = product of:
          0.05638911 = sum of:
            0.05638911 = weight(_text_:classification in 3530) [ClassicSimilarity], result of:
              0.05638911 = score(doc=3530,freq=4.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.34832728 = fieldWeight in 3530, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3530)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Classes in the Dewey Decimal Classification (DDC) system function as neighborhoods around focal topics in captions and notes. Topical neighborhoods are generated through specialization and instantiation, complex topic synthesis, index terms and mapped headings, hierarchical force, rules for choosing between numbers, development of the DDC over time, and use of the system in classifying resources. Implications of representation using a formal knowledge representation language are explored.
  3. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.07
    0.06521559 = product of:
      0.097823374 = sum of:
        0.08073489 = product of:
          0.24220468 = sum of:
            0.24220468 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.24220468 = score(doc=400,freq=2.0), product of:
                0.43095535 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05083213 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.017088482 = product of:
          0.034176964 = sum of:
            0.034176964 = weight(_text_:classification in 400) [ClassicSimilarity], result of:
              0.034176964 = score(doc=400,freq=2.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.21111822 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    On a scientific concept hierarchy, a parent concept may have a few attributes, each of which has multiple values being a group of child concepts. We call these attributes facets: classification has a few facets such as application (e.g., face recognition), model (e.g., svm, knn), and metric (e.g., precision). In this work, we aim at building faceted concept hierarchies from scientific literature. Hierarchy construction methods heavily rely on hypernym detection, however, the faceted relations are parent-to-child links but the hypernym relation is a multi-hop, i.e., ancestor-to-descendent link with a specific facet "type-of". We use information extraction techniques to find synonyms, sibling concepts, and ancestor-descendent relations from a data science corpus. And we propose a hierarchy growth algorithm to infer the parent-child links from the three types of relationships. It resolves conflicts by maintaining the acyclic structure of a hierarchy.
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  4. Buxton, A.: Ontologies and classification of chemicals : can they help each other? (2011) 0.06
    0.06422767 = product of:
      0.096341506 = sum of:
        0.0536203 = weight(_text_:index in 4817) [ClassicSimilarity], result of:
          0.0536203 = score(doc=4817,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.24139762 = fieldWeight in 4817, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4817)
        0.0427212 = product of:
          0.0854424 = sum of:
            0.0854424 = weight(_text_:classification in 4817) [ClassicSimilarity], result of:
              0.0854424 = score(doc=4817,freq=18.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.5277955 = fieldWeight in 4817, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4817)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The chemistry schedule in the Universal Decimal Classification (UDC) is badly in need of revision. In many places it is enumerative rather than synthetic (giving rules for constructing numbers for any compound required). In principle, chemistry should be the ideal subject for a synthetic classification but many common compounds have complex formulae and a synthetic system becomes unwieldy. Also, all compounds belong to several hierarchies, e.g. chloroquin is a heterocycle, an aromatic compound, amine, antimalarial drug, etc. and rules need to be drawn up as to which ones take precedence and which ones should be taken into account in classifying a compound. There are obvious similarities between a classification and an ontology. This paper looks at existing ontologies for chemistry, especially ChEBI which is one of the largest, to examine how a classification and an ontology might draw on each other and what the problem areas are. An ontology might help in creating an index to a classification (for chemicals not listed or to provide access by facets not used in the classification) and a classification could provide a hierarchy to use in an ontology.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  5. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.06
    0.0639876 = product of:
      0.0959814 = sum of:
        0.083929054 = weight(_text_:index in 1633) [ClassicSimilarity], result of:
          0.083929054 = score(doc=1633,freq=10.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.37784708 = fieldWeight in 1633, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1633)
        0.01205234 = product of:
          0.02410468 = sum of:
            0.02410468 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
              0.02410468 = score(doc=1633,freq=2.0), product of:
                0.17800546 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05083213 = queryNorm
                0.1354154 = fieldWeight in 1633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1633)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to improve the conceptual-based search by incorporating structural ontological information such as concepts and relations. Generally, Semantic-based information retrieval aims to identify relevant information based on the meanings of the query terms or on the context of the terms and the performance of semantic information retrieval is carried out through standard measures-precision and recall. Higher precision leads to the (meaningful) relevant documents obtained and lower recall leads to the less coverage of the concepts. Design/methodology/approach - In this paper, the authors enhance the existing ontology-based indexing proposed by Kohler et al., by incorporating sibling information to the index. The index designed by Kohler et al., contains only super and sub-concepts from the ontology. In addition, in our approach, we focus on two tasks; query expansion and ranking of the expanded queries, to improve the efficiency of the ontology-based search. The aforementioned tasks make use of ontological concepts, and relations existing between those concepts so as to obtain semantically more relevant search results for a given query. Findings - The proposed ontology-based indexing technique is investigated by analysing the coverage of concepts that are being populated in the index. Here, we introduce a new measure called index enhancement measure, to estimate the coverage of ontological concepts being indexed. We have evaluated the ontology-based search for the tourism domain with the tourism documents and tourism-specific ontology. The comparison of search results based on the use of ontology "with and without query expansion" is examined to estimate the efficiency of the proposed query expansion task. The ranking is compared with the ORank system to evaluate the performance of our ontology-based search. From these analyses, the ontology-based search results shows better recall when compared to the other concept-based search systems. The mean average precision of the ontology-based search is found to be 0.79 and the recall is found to be 0.65, the ORank system has the mean average precision of 0.62 and the recall is found to be 0.51, while the concept-based search has the mean average precision of 0.56 and the recall is found to be 0.42. Practical implications - When the concept is not present in the domain-specific ontology, the concept cannot be indexed. When the given query term is not available in the ontology then the term-based results are retrieved. Originality/value - In addition to super and sub-concepts, we incorporate the concepts present in same level (siblings) to the ontological index. The structural information from the ontology is determined for the query expansion. The ranking of the documents depends on the type of the query (single concept query, multiple concept queries and concept with relation queries) and the ontological relations that exists in the query and the documents. With this ontological structural information, the search results showed us better coverage of concepts with respect to the query.
    Date
    20. 1.2015 18:30:22
  6. Pieterse, V.; Kourie, D.G.: Lists, taxonomies, lattices, thesauri and ontologies : paving a pathway through a terminological jungle (2014) 0.05
    0.04917285 = product of:
      0.07375927 = sum of:
        0.0536203 = weight(_text_:index in 1386) [ClassicSimilarity], result of:
          0.0536203 = score(doc=1386,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.24139762 = fieldWeight in 1386, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1386)
        0.020138968 = product of:
          0.040277936 = sum of:
            0.040277936 = weight(_text_:classification in 1386) [ClassicSimilarity], result of:
              0.040277936 = score(doc=1386,freq=4.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.24880521 = fieldWeight in 1386, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1386)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article seeks to resolve ambiguities and create a shared vocabulary with reference to classification-related terms. Due to the need to organize information in all disciplines, knowledge organization systems (KOSs) with varying attributes, content and structures have been developed independently in different domains. These scattered developments have given rise to a conglomeration of classification-related terms which are often used inconsistently both within and across different research fields. This terminological conundrum has impeded communication among researchers. To build the ideal Semantic Web, this problem will have to be surmounted. A common nomenclature is needed to incorporate the vast body of semantic information embedded in existing classifications when developing new systems and to facilitate interoperability among diverse systems. To bridge the terminological gap between the researchers and practitioners of disparate disciplines, we have identified five broad classes of KOSs: lists, taxonomies, lattices, thesauri and ontologies. We provide definitions of the terms catalogue, index, lexicon, knowledge base and topic map. After explaining the meaning and usage of these terms, we delineate how they relate to one another as well as to the different types of KOSs. Our definitions are not intended to replace established definitions but rather to clarify their respective meanings and to advocate their proper usage. In particular we caution against the indiscriminate use of the term ontology in contexts where, in our view, the term thesaurus would be more appropriate.
  7. Jansen, B.; Browne, G.M.: Navigating information spaces : index / mind map / topic map? (2021) 0.04
    0.040442966 = product of:
      0.1213289 = sum of:
        0.1213289 = weight(_text_:index in 436) [ClassicSimilarity], result of:
          0.1213289 = score(doc=436,freq=4.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.5462205 = fieldWeight in 436, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0625 = fieldNorm(doc=436)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper discusses the use of wiki technology to provide a navigation structure for a collection of newspaper clippings. We overview the architecture of the wiki, discuss the navigation structure and pose the question: is the navigation structure an index, and if so, what type, or is it just a linkage structure or topic map. Does such a distinction really matter? Are these definitions in reality function based?
  8. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.04
    0.037780233 = product of:
      0.056670345 = sum of:
        0.04289624 = weight(_text_:index in 4399) [ClassicSimilarity], result of:
          0.04289624 = score(doc=4399,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.1931181 = fieldWeight in 4399, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=4399)
        0.0137741035 = product of:
          0.027548207 = sum of:
            0.027548207 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.027548207 = score(doc=4399,freq=2.0), product of:
                0.17800546 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05083213 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Indexing plays a vital role in Information Retrieval. With the availability of huge volume of information, it has become necessary to index the information in such a way to make easier for the end users to find the information they want efficiently and accurately. Keyword-based indexing uses words as indexing terms. It is not capable of capturing the implicit relation among terms or the semantics of the words in the document. To eliminate this limitation, ontology-based indexing came into existence, which allows semantic based indexing to solve complex and indirect user queries. Ontologies are used for document indexing which allows semantic based information retrieval. Existing ontologies or the ones constructed from scratch are used presently for indexing. Constructing ontologies from scratch is a labor-intensive task and requires extensive domain knowledge whereas use of an existing ontology may leave some important concepts in documents un-annotated. Using multiple ontologies can overcome the problem of missing out concepts to a great extent, but it is difficult to manage (changes in ontologies over time by their developers) multiple ontologies and ontology heterogeneity also arises due to ontologies constructed by different ontology developers. One possible solution to managing multiple ontologies and build from scratch is to use modular ontologies for indexing.
    Date
    20. 1.2015 18:30:22
  9. Frické, M.: Logic and the organization of information (2012) 0.04
    0.036533188 = product of:
      0.05479978 = sum of:
        0.03753421 = weight(_text_:index in 1782) [ClassicSimilarity], result of:
          0.03753421 = score(doc=1782,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.16897833 = fieldWeight in 1782, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.01726557 = product of:
          0.03453114 = sum of:
            0.03453114 = weight(_text_:classification in 1782) [ClassicSimilarity], result of:
              0.03453114 = score(doc=1782,freq=6.0), product of:
                0.16188543 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05083213 = queryNorm
                0.21330604 = fieldWeight in 1782, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
  10. Hauer, M.: Mehrsprachige semantische Netze leichter entwickeln (2002) 0.04
    0.035024635 = product of:
      0.10507391 = sum of:
        0.10507391 = weight(_text_:index in 3894) [ClassicSimilarity], result of:
          0.10507391 = score(doc=3894,freq=12.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.47304082 = fieldWeight in 3894, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=3894)
      0.33333334 = coord(1/3)
    
    Abstract
    AGI - Information Management Consultants liefern seit nunmehr 16 Jahren eine Software zur Entwicklung von Thesauri und Klassifikationen, ehemals bezeichnet als INDEX, seit zweieinhalb Jahren als IC INDEX neu entwickelt. Solche Terminologien werden oft auch als Glossar, Lexikon, Topic Maps, RDF, semantisches Netz, Systematik, Aktenplan oder Nomenklatur bezeichnet. Die Software erlaubt zwar schon immer, dass solche terminologischen Werke mehrsprachig angelegt sind, doch es gab keine speziellen Werkzeuge, um die Übersetzung zu erleichtern. Die Globalisierung führt zunehmend auch zur Mehrsprachigkeit von Fachterminologien, wie laufende Projekte belegen. In IC INDEX 5.08 wurde deshalb ein spezieller Workflow für die Übersetzung implementiert, der Wortfelder bearbeitet und dabei weitgehend automatisch, aber vom Übersetzer kontrolliert, die richtigen Verbindungen zwischen den Termen in den anderen Sprachen erzeugt. Bereits dieser Workflow beschleunigt wesentlich die Übersetzungstätigkeit. Doch es geht noch schneller: der eTranslation Server von Linguatec generiert automatisch Übersetzungsvorschläge für Deutsch/English und Deutsch/Französisch. Demnächst auch Deutsch/Spanisch und Deutsch/Italienisch. Gerade bei Mehrwortbegriffen, Klassenbezeichnungen und Komposita spielt die automatische Übersetzung gegenüber dem Wörterbuch-Lookup ihre Stärke aus. Der Rückgriff ins Wörterbuch ist selbstverständlich auch implementiert, sowohl auf das Linguatec-Wörterbuch und zusätzlich jedes beliebige über eine URL adressierbare Wörterbuch. Jeder Übersetzungsvorschlag muss vom Terminologie-Entwickler bestätigt werden. Im Rahmen der Oualitätskontrolle haben wir anhand vorliegender mehrsprachiger Thesauri getestet mit dem Ergebnis, dass die automatischen Vorschläge oft gleich und fast immer sehr nahe an der gewünschten Übersetzung waren. Worte, die für durchschnittlich gebildete Menschen nicht mehr verständlich sind, bereiten auch der maschinellen Übersetzung Probleme, z.B. Fachbegriffe aus Medizin, Chemie und anderen Wissenschaften. Aber auch ein Humanübersetzer wäre hier ohne einschlägige Fachausbildung überfordert. Also, ohne Fach- und ohne Sprachkompetenz geht es nicht, aber mit geht es ziemlich flott. IC INDEX basiert auf Lotus Notes & Domino 5.08. Beliebige Relationen zwischen Termen sind zulässig, die ANSI-Normen sind implementiert und um zusätzliche Relationen ergänzt, 26 Relationen gehören zum Lieferumfang. Ausgaben gemäß Topic Maps oder RDF - zwei eng verwandte Normen-werden bei Nachfrage entwickelt. Ausgaben sind in HMTL, XML, eine ansprechende Druckversion unter MS Word 2000 und für verschiedene Search-Engines vorhanden. AGI - Information Management Consultants, Neustadt an der Weinstraße, beraten seit 1983 Unternehmen und Organisationen im dem heute als Knowledge Management bezeichneten Feld. Seit 1994 liefern sie eine umfassende, hochintegrative Lösung: "Information Center" - darin ist IC INDEX ein eigenständiges Modul zur Unterstützung von mehrsprachiger Indexierung und mehrsprachigem semantischem Retrieval. Linguatec, München, ist einstmals aus den linguistischen Forschungslabors von IBM hervorgegangen und ist über den Personal Translator weithin bekannt.
    Object
    Index
  11. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.03
    0.030957699 = product of:
      0.0928731 = sum of:
        0.0928731 = weight(_text_:index in 231) [ClassicSimilarity], result of:
          0.0928731 = score(doc=231,freq=6.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.418113 = fieldWeight in 231, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
      0.33333334 = coord(1/3)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
  12. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.03
    0.030332223 = product of:
      0.09099667 = sum of:
        0.09099667 = weight(_text_:index in 1638) [ClassicSimilarity], result of:
          0.09099667 = score(doc=1638,freq=4.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.40966535 = fieldWeight in 1638, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
      0.33333334 = coord(1/3)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
  13. Priss, U.: Description logic and faceted knowledge representation (1999) 0.03
    0.029885277 = product of:
      0.08965583 = sum of:
        0.08965583 = sum of:
          0.048333526 = weight(_text_:classification in 2655) [ClassicSimilarity], result of:
            0.048333526 = score(doc=2655,freq=4.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.29856625 = fieldWeight in 2655, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
          0.04132231 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
            0.04132231 = score(doc=2655,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.23214069 = fieldWeight in 2655, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2655)
      0.33333334 = coord(1/3)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  14. Madalli, D.P.; Balaji, B.P.; Sarangi, A.K.: Music domain analysis for building faceted ontological representation (2014) 0.03
    0.029360829 = product of:
      0.088082485 = sum of:
        0.088082485 = sum of:
          0.039873123 = weight(_text_:classification in 1437) [ClassicSimilarity], result of:
            0.039873123 = score(doc=1437,freq=2.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.24630459 = fieldWeight in 1437, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1437)
          0.04820936 = weight(_text_:22 in 1437) [ClassicSimilarity], result of:
            0.04820936 = score(doc=1437,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.2708308 = fieldWeight in 1437, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1437)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper describes to construct faceted ontologies for domain modeling. Building upon the faceted theory of S.R. Ranganathan (1967), the paper intends to address the faceted classification approach applied to build domain ontologies. As classificatory ontologies are employed to represent the relationships of entities and objects on the web, the faceted approach helps to analyze domain representation in an effective way for modeling. Based on this perspective, an ontology of the music domain has been analyzed that would serve as a case study.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  15. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.02
    0.0249044 = product of:
      0.0747132 = sum of:
        0.0747132 = sum of:
          0.040277936 = weight(_text_:classification in 1434) [ClassicSimilarity], result of:
            0.040277936 = score(doc=1434,freq=4.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.24880521 = fieldWeight in 1434, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
          0.03443526 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
            0.03443526 = score(doc=1434,freq=2.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.19345059 = fieldWeight in 1434, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1434)
      0.33333334 = coord(1/3)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  16. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.02
    0.023727134 = product of:
      0.0711814 = sum of:
        0.0711814 = sum of:
          0.03222235 = weight(_text_:classification in 2654) [ClassicSimilarity], result of:
            0.03222235 = score(doc=2654,freq=4.0), product of:
              0.16188543 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05083213 = queryNorm
              0.19904417 = fieldWeight in 2654, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
          0.03895905 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
            0.03895905 = score(doc=2654,freq=4.0), product of:
              0.17800546 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05083213 = queryNorm
              0.21886435 = fieldWeight in 2654, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2654)
      0.33333334 = coord(1/3)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  17. Davies, J.; Weeks, R.; Krohn, U.: QuizRDF: search technology for the Semantic Web (2004) 0.02
    0.02144812 = product of:
      0.06434436 = sum of:
        0.06434436 = weight(_text_:index in 4316) [ClassicSimilarity], result of:
          0.06434436 = score(doc=4316,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.28967714 = fieldWeight in 4316, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=4316)
      0.33333334 = coord(1/3)
    
    Abstract
    An information-seeking system is described which combines traditional keyword querying of WWW resources with the ability to browse and query against RDF annotations of those resources. RDF(S) and RDF are used to specify and populate an ontology and the resultant RDF annotations are then indexed along with the full text of the annotated resources. The resultant index allows both keyword querying against the full text of the document and the literal values occurring in the RDF annotations, along with the ability to browse and query the ontology. We motivate our approach as a key enabler for fully exploiting the Semantic Web in the area of knowledge management and argue that the ability to combine searching and browsing behaviours more fully supports a typical information-seeking task. The approach is characterised as "low threshold, high ceiling" in the sense that where RDF annotations exist they are exploited for an improved information-seeking experience but where they do not yet exist, a search capability is still available.
  18. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.02
    0.017941087 = product of:
      0.053823262 = sum of:
        0.053823262 = product of:
          0.16146979 = sum of:
            0.16146979 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16146979 = score(doc=701,freq=2.0), product of:
                0.43095535 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05083213 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  19. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.02
    0.017941087 = product of:
      0.053823262 = sum of:
        0.053823262 = product of:
          0.16146979 = sum of:
            0.16146979 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16146979 = score(doc=5820,freq=2.0), product of:
                0.43095535 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05083213 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  20. Köhler, J.; Philippi, S.; Specht, M.; Rüegg, A.: Ontology based text indexing and querying for the semantic web (2006) 0.02
    0.017873434 = product of:
      0.0536203 = sum of:
        0.0536203 = weight(_text_:index in 3280) [ClassicSimilarity], result of:
          0.0536203 = score(doc=3280,freq=2.0), product of:
            0.2221244 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.05083213 = queryNorm
            0.24139762 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3280)
      0.33333334 = coord(1/3)
    
    Abstract
    This publication shows how the gap between the HTML based internet and the RDF based vision of the semantic web might be bridged, by linking words in texts to concepts of ontologies. Most current search engines use indexes that are built at the syntactical level and return hits based on simple string comparisons. However, the indexes do not contain synonyms, cannot differentiate between homonyms ('mouse' as a pointing vs. 'mouse' as an animal) and users receive different search results when they use different conjugation forms of the same word. In this publication, we present a system that uses ontologies and Natural Language Processing techniques to index texts, and thus supports word sense disambiguation and the retrieval of texts that contain equivalent words, by indexing them to concepts of ontologies. For this purpose, we developed fully automated methods for mapping equivalent concepts of imported RDF ontologies (for this prototype WordNet, SUMO and OpenCyc). These methods will thus allow the seamless integration of domain specific ontologies for concept based information retrieval in different domains. To demonstrate the practical workability of this approach, a set of web pages that contain synonyms and homonyms were indexed and can be queried via a search engine like query frontend. However, the ontology based indexing approach can also be used for other data mining applications such text clustering, relation mining and for searching free text fields in biological databases. The ontology alignment methods and some of the text mining principles described in this publication are now incorporated into the ONDEX system http://ondex.sourceforge.net/.

Years

Languages

  • e 133
  • d 14
  • f 1
  • sp 1
  • More… Less…

Types

  • a 110
  • el 36
  • m 9
  • x 8
  • n 4
  • p 4
  • r 1
  • More… Less…