Search (11 results, page 1 of 1)

  • × author_ss:"Broughton, V."
  1. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.02
    0.021217413 = product of:
      0.042434826 = sum of:
        0.042434826 = product of:
          0.08486965 = sum of:
            0.08486965 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.08486965 = score(doc=6048,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  2. Broughton, V.: Henry Evelyn Bliss : the other immortal or a prophet without honour? (2008) 0.01
    0.012376824 = product of:
      0.024753649 = sum of:
        0.024753649 = product of:
          0.049507298 = sum of:
            0.049507298 = weight(_text_:22 in 2550) [ClassicSimilarity], result of:
              0.049507298 = score(doc=2550,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.2708308 = fieldWeight in 2550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2550)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    9. 2.1997 18:44:22
  3. Broughton, V.; Lane, H.: Classification schemes revisited : applications to Web indexing and searching (2000) 0.01
    0.011501143 = product of:
      0.023002286 = sum of:
        0.023002286 = product of:
          0.04600457 = sum of:
            0.04600457 = weight(_text_:online in 2476) [ClassicSimilarity], result of:
              0.04600457 = score(doc=2476,freq=6.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.29038906 = fieldWeight in 2476, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2476)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    A short discussion of using classification systems to organize the web, one of many such. The authors are both involved with BC2 and naturally think it is the best system for organizing information online. They list reasons why faceted classifications are best (e.g. no theoretical limits to specificity or exhaustivity; easier to handle complex subjects; flexible enough to accommodate different user needs) and take a brief look at how BC2 works. They conclude with a discussion of how and why it should be applied to online resources, and a plea for recognition of the importance of classification and subject analysis skills, even when full-text searching is available and databases respond instantly.
    Theme
    Klassifikationssysteme im Online-Retrieval
  4. Broughton, V.: Notational expressivity : the case for and against the representation of internal subject structure in notational coding (1999) 0.01
    0.010608707 = product of:
      0.021217413 = sum of:
        0.021217413 = product of:
          0.042434826 = sum of:
            0.042434826 = weight(_text_:22 in 6392) [ClassicSimilarity], result of:
              0.042434826 = score(doc=6392,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23214069 = fieldWeight in 6392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6392)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 8.2001 13:22:14
  5. Broughton, V.; Lane, H.: ¬The Bliss Bibliographic Classification in action : moving from a special to a universal faceted classification via a digital platform (2004) 0.01
    0.009390644 = product of:
      0.018781288 = sum of:
        0.018781288 = product of:
          0.037562575 = sum of:
            0.037562575 = weight(_text_:online in 2633) [ClassicSimilarity], result of:
              0.037562575 = score(doc=2633,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23710167 = fieldWeight in 2633, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2633)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper examines the differences in the functional requirements of a faceted classification system when used in a conventional print-based environment (where the emphasis is on the browse function of the classification) as compared to its application to digital collections (where the retrieval function is paramount). The use of the second edition of Bliss's Bibliographic Classification (BC2) as a general classification for the physical organization of undergraduate collections in the University of Cambridge is described. The development of an online tool for indexing of digital resources using the Bliss terminologies is also described, and the advantages of facet analysis for data structuring and system syntax within the prototype tool are discussed. The move from the print-based environment to the digital makes different demands an both the content and the syntax of the classification, and while the conceptual structure remains similar, manipulation of the scheme and the process of content description can be markedly different.
    Theme
    Klassifikationssysteme im Online-Retrieval
  6. Broughton, V.; Slavic, A.: Building a faceted classification for the humanities : principles and procedures (2007) 0.01
    0.009200915 = product of:
      0.01840183 = sum of:
        0.01840183 = product of:
          0.03680366 = sum of:
            0.03680366 = weight(_text_:online in 2875) [ClassicSimilarity], result of:
              0.03680366 = score(doc=2875,freq=6.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23231125 = fieldWeight in 2875, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2875)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to provide an overview of principles and procedures involved in creating a faceted classification scheme for use in resource discovery in an online environment. Design/methodology/approach - Facet analysis provides an established rigorous methodology for the conceptual organization of a subject field, and the structuring of an associated classification or controlled vocabulary. This paper explains how that methodology was applied to the humanities in the FATKS project, where the objective was to explore the potential of facet analytical theory for creating a controlled vocabulary for the humanities, and to establish the requirements of a faceted classification appropriate to an online environment. A detailed faceted vocabulary was developed for two areas of the humanities within a broader facet framework for the whole of knowledge. Research issues included how to create a data model which made the faceted structure explicit and machine-readable and provided for its further development and use. Findings - In order to support easy facet combination in indexing, and facet searching and browsing on the interface, faceted classification requires a formalized data structure and an appropriate tool for its management. The conceptual framework of a faceted system proper can be applied satisfactorily to humanities, and fully integrated within a vocabulary management system. Research limitations/implications - The procedures described in this paper are concerned only with the structuring of the classification, and do not extend to indexing, retrieval and application issues. Practical implications - Many stakeholders in the domain of resource discovery consider developing their own classification system and supporting tools. The methods described in this paper may clarify the process of building a faceted classification and may provide some useful ideas with respect to the vocabulary maintenance tool. Originality/value - As far as the authors are aware there is no comparable research in this area.
    Theme
    Klassifikationssysteme im Online-Retrieval
  7. Broughton, V.: Finding Bliss on the Web : some problems of representing faceted terminologies in digital environments 0.01
    0.0079682255 = product of:
      0.015936451 = sum of:
        0.015936451 = product of:
          0.031872902 = sum of:
            0.031872902 = weight(_text_:online in 3532) [ClassicSimilarity], result of:
              0.031872902 = score(doc=3532,freq=2.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.20118743 = fieldWeight in 3532, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3532)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
  8. Broughton, V.: Structural, linguistic and mathematical elements in indexing languages and search engines : implications for the use of index languages in electronic and non-LIS environments (2000) 0.01
    0.0066401875 = product of:
      0.013280375 = sum of:
        0.013280375 = product of:
          0.02656075 = sum of:
            0.02656075 = weight(_text_:online in 96) [ClassicSimilarity], result of:
              0.02656075 = score(doc=96,freq=2.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.16765618 = fieldWeight in 96, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=96)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Verbale Doksprachen im Online-Retrieval
  9. Broughton, V.: Faceted classification as a basis for knowledge organization in a digital environment : the Bliss Bibliographic Classification as a model for vocabulary management and the creation of multi-dimensional knowledge structures (2001) 0.01
    0.0066401875 = product of:
      0.013280375 = sum of:
        0.013280375 = product of:
          0.02656075 = sum of:
            0.02656075 = weight(_text_:online in 5895) [ClassicSimilarity], result of:
              0.02656075 = score(doc=5895,freq=2.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.16765618 = fieldWeight in 5895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5895)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
  10. Broughton, V.: Essential Library of Congress Subject Headings (2009) 0.01
    0.0066401875 = product of:
      0.013280375 = sum of:
        0.013280375 = product of:
          0.02656075 = sum of:
            0.02656075 = weight(_text_:online in 395) [ClassicSimilarity], result of:
              0.02656075 = score(doc=395,freq=2.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.16765618 = fieldWeight in 395, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=395)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    LCSH are increasingly seen as 'the' English language controlled vocabulary, despite their lack of a theoretical foundation, and their evident US bias. In mapping exercises between national subject heading lists, and in exercises in digital resource organization and management, LCSH are often chosen because of the lack of any other widely accepted English language standard for subject cataloguing. It is therefore important that the basic nature of LCSH, their advantages, and their limitations, are well understood both by LIS practitioners and those in the wider information community. Information professionals who attended library school before 1995 - and many more recent library school graduates - are unlikely to have had a formal introduction to LCSH. Paraprofessionals who undertake cataloguing are similarly unlikely to have enjoyed an induction to the broad principles of LCSH. There is currently no compact guide to LCSH written from a UK viewpoint, and this eminently practical text fills that gap. It features topics including: background and history of LCSH; subject heading lists; structure and display in LCSH; form of entry; application of LCSH; document analysis; main headings; topical, geographical and free-floating sub-divisions; building compound headings; name headings; headings for literature, art, music, history and law; and, LCSH in the online environment. There is a strong emphasis throughout on worked examples and practical exercises in the application of the scheme, and a full glossary of terms is supplied. No prior knowledge or experience of subject cataloguing is assumed. This is an indispensable guide to LCSH for practitioners and students alike from a well-known and popular author.
  11. Broughton, V.: Essential classification (2004) 0.00
    0.002656075 = product of:
      0.00531215 = sum of:
        0.00531215 = product of:
          0.0106243 = sum of:
            0.0106243 = weight(_text_:online in 2824) [ClassicSimilarity], result of:
              0.0106243 = score(doc=2824,freq=2.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.067062475 = fieldWeight in 2824, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."