Search (40 results, page 1 of 2)

  • × author_ss:"Thelwall, M."
  1. Thelwall, M.; Buckley, K.; Paltoglou, G.; Cai, D.; Kappas, A.: Sentiment strength detection in short informal text (2010) 0.03
    0.030961553 = product of:
      0.061923105 = sum of:
        0.061923105 = sum of:
          0.02656075 = weight(_text_:online in 4200) [ClassicSimilarity], result of:
            0.02656075 = score(doc=4200,freq=2.0), product of:
              0.15842392 = queryWeight, product of:
                3.0349014 = idf(docFreq=5778, maxDocs=44218)
                0.05220068 = queryNorm
              0.16765618 = fieldWeight in 4200, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0349014 = idf(docFreq=5778, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4200)
          0.035362355 = weight(_text_:22 in 4200) [ClassicSimilarity], result of:
            0.035362355 = score(doc=4200,freq=2.0), product of:
              0.18279788 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05220068 = queryNorm
              0.19345059 = fieldWeight in 4200, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4200)
      0.5 = coord(1/2)
    
    Abstract
    A huge number of informal messages are posted every day in social network sites, blogs, and discussion forums. Emotions seem to be frequently important in these texts for expressing friendship, showing social support or as part of online arguments. Algorithms to identify sentiment and sentiment strength are needed to help understand the role of emotion in this informal communication and also to identify inappropriate or anomalous affective utterances, potentially associated with threatening behavior to the self or others. Nevertheless, existing sentiment detection algorithms tend to be commercially oriented, designed to identify opinions about products rather than user behaviors. This article partly fills this gap with a new algorithm, SentiStrength, to extract sentiment strength from informal English text, using new methods to exploit the de facto grammars and spelling styles of cyberspace. Applied to MySpace comments and with a lookup table of term sentiment strengths optimized by machine learning, SentiStrength is able to predict positive emotion with 60.6% accuracy and negative emotion with 72.8% accuracy, both based upon strength scales of 1-5. The former, but not the latter, is better than baseline and a wide range of general machine learning approaches.
    Date
    22. 1.2011 14:29:23
  2. Thelwall, M.; Kousha, K.: Online presentations as a source of scientific impact? : an analysis of PowerPoint files citing academic journals (2008) 0.02
    0.017568287 = product of:
      0.035136573 = sum of:
        0.035136573 = product of:
          0.070273146 = sum of:
            0.070273146 = weight(_text_:online in 1614) [ClassicSimilarity], result of:
              0.070273146 = score(doc=1614,freq=14.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.4435766 = fieldWeight in 1614, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1614)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Open-access online publication has made available an increasingly wide range of document types for scientometric analysis. In this article, we focus on citations in online presentations, seeking evidence of their value as nontraditional indicators of research impact. For this purpose, we searched for online PowerPoint files mentioning any one of 1,807 ISI-indexed journals in ten science and ten social science disciplines. We also manually classified 1,378 online PowerPoint citations to journals in eight additional science and social science disciplines. The results showed that very few journals were cited frequently enough in online PowerPoint files to make impact assessment worthwhile, with the main exceptions being popular magazines like Scientific American and Harvard Business Review. Surprisingly, however, there was little difference overall in the number of PowerPoint citations to science and to the social sciences, and also in the proportion representing traditional impact (about 60%) and wider impact (about 15%). It seems that the main scientometric value for online presentations may be in tracking the popularization of research, or for comparing the impact of whole journals rather than individual articles.
  3. Kousha, K.; Thelwall, M.: Assessing the impact of disciplinary research on teaching : an automatic analysis of online syllabuses (2008) 0.02
    0.017568287 = product of:
      0.035136573 = sum of:
        0.035136573 = product of:
          0.070273146 = sum of:
            0.070273146 = weight(_text_:online in 2383) [ClassicSimilarity], result of:
              0.070273146 = score(doc=2383,freq=14.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.4435766 = fieldWeight in 2383, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2383)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The impact of published academic research in the sciences and social sciences, when measured, is commonly estimated by counting citations from journal articles. The Web has now introduced new potential sources of quantitative data online that could be used to measure aspects of research impact. In this article we assess the extent to which citations from online syllabuses could be a valuable source of evidence about the educational utility of research. An analysis of online syllabus citations to 70,700 articles published in 2003 in the journals of 12 subjects indicates that online syllabus citations were sufficiently numerous to be a useful impact indictor in some social sciences, including political science and information and library science, but not in others, nor in any sciences. This result was consistent with current social science research having, in general, more educational value than current science research. Moreover, articles frequently cited in online syllabuses were not necessarily highly cited by other articles. Hence it seems that online syllabus citations provide a valuable additional source of evidence about the impact of journals, scholars, and research articles in some social sciences.
  4. Thelwall, M.; Harries, G.: Do the Web Sites of Higher Rated Scholars Have Significantly More Online Impact? (2004) 0.01
    0.014847913 = product of:
      0.029695826 = sum of:
        0.029695826 = product of:
          0.05939165 = sum of:
            0.05939165 = weight(_text_:online in 2123) [ClassicSimilarity], result of:
              0.05939165 = score(doc=2123,freq=10.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.37489069 = fieldWeight in 2123, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2123)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The quality and impact of academic Web sites is of interest to many audiences, including the scholars who use them and Web educators who need to identify best practice. Several large-scale European Union research projects have been funded to build new indicators for online scientific activity, reflecting recognition of the importance of the Web for scholarly communication. In this paper we address the key question of whether higher rated scholars produce higher impact Web sites, using the United Kingdom as a case study and measuring scholars' quality in terms of university-wide average research ratings. Methodological issues concerning the measurement of the online impact are discussed, leading to the adoption of counts of links to a university's constituent single domain Web sites from an aggregated counting metric. The findings suggest that universities with higher rated scholars produce significantly more Web content but with a similar average online impact. Higher rated scholars therefore attract more total links from their peers, but only by being more prolific, refuting earlier suggestions. It can be surmised that general Web publications are very different from scholarly journal articles and conference papers, for which scholarly quality does associate with citation impact. This has important implications for the construction of new Web indicators, for example that online impact should not be used to assess the quality of small groups of scholars, even within a single discipline.
  5. Thelwall, M.; Ruschenburg, T.: Grundlagen und Forschungsfelder der Webometrie (2006) 0.01
    0.014144942 = product of:
      0.028289884 = sum of:
        0.028289884 = product of:
          0.05657977 = sum of:
            0.05657977 = weight(_text_:22 in 77) [ClassicSimilarity], result of:
              0.05657977 = score(doc=77,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.30952093 = fieldWeight in 77, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=77)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    4.12.2006 12:12:22
  6. Angus, E.; Thelwall, M.; Stuart, D.: General patterns of tag usage among university groups in Flickr (2008) 0.01
    0.013801372 = product of:
      0.027602743 = sum of:
        0.027602743 = product of:
          0.055205487 = sum of:
            0.055205487 = weight(_text_:online in 2554) [ClassicSimilarity], result of:
              0.055205487 = score(doc=2554,freq=6.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.34846687 = fieldWeight in 2554, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2554)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this research is to investigate general patterns of tag usage and determines the usefulness of the tags used within university image groups to the wider Flickr community. There has been a significant rise in the use of Web 2.0 social network web sites and online applications in recent years. One of the most popular is Flickr, an online image management application. Design/methodology/approach - This study uses a webometric data collection, classification and informetric analysis. Findings - The results show that members of university image groups tend to tag in a manner that is of use to users of the system as a whole rather than merely for the tag creator. Originality/value - This paper gives a valuable insight into the tagging practices of image groups in Flickr.
    Source
    Online information review. 32(2008) no.1, S.89-101
  7. Thelwall, M.: Directing students to new information types : a new role for Google in literature searches? (2005) 0.01
    0.0131469015 = product of:
      0.026293803 = sum of:
        0.026293803 = product of:
          0.052587606 = sum of:
            0.052587606 = weight(_text_:online in 364) [ClassicSimilarity], result of:
              0.052587606 = score(doc=364,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.33194235 = fieldWeight in 364, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=364)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Conducting a literature review is an important activity for postgraduates and many undergraduates. Librarians can play an important role, directing students to digital libraries, compiling online subject reSource lists, and educating about the need to evaluate the quality of online resources. In order to conduct an effective literature search in a new area, however, in some subjects it is necessary to gain basic topic knowledge, including specialist vocabularies. Google's link-based page ranking algorithm makes this search engine an ideal tool for finding specialist topic introductory material, particularly in computer science, and so librarians should be teaching this as part of a strategic literature review approach.
  8. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.01
    0.01250248 = product of:
      0.02500496 = sum of:
        0.02500496 = product of:
          0.05000992 = sum of:
            0.05000992 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
              0.05000992 = score(doc=2734,freq=4.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.27358043 = fieldWeight in 2734, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
  9. Kousha, K.; Thelwall, M.; Abdoli, M.: ¬The role of online videos in research communication : a content analysis of YouTube videos cited in academic publications (2012) 0.01
    0.011501143 = product of:
      0.023002286 = sum of:
        0.023002286 = product of:
          0.04600457 = sum of:
            0.04600457 = weight(_text_:online in 382) [ClassicSimilarity], result of:
              0.04600457 = score(doc=382,freq=6.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.29038906 = fieldWeight in 382, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=382)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although there is some evidence that online videos are increasingly used by academics for informal scholarly communication and teaching, the extent to which they are used in published academic research is unknown. This article explores the extent to which YouTube videos are cited in academic publications and whether there are significant broad disciplinary differences in this practice. To investigate, we extracted the URL citations to YouTube videos from academic publications indexed by Scopus. A total of 1,808 Scopus publications cited at least one YouTube video, and there was a steady upward growth in citing online videos within scholarly publications from 2006 to 2011, with YouTube citations being most common within arts and humanities (0.3%) and the social sciences (0.2%). A content analysis of 551 YouTube videos cited by research articles indicated that in science (78%) and in medicine and health sciences (77%), over three fourths of the cited videos had either direct scientific (e.g., laboratory experiments) or scientific-related contents (e.g., academic lectures or education) whereas in the arts and humanities, about 80% of the YouTube videos had art, culture, or history themes, and in the social sciences, about 63% of the videos were related to news, politics, advertisements, and documentaries. This shows both the disciplinary differences and the wide variety of innovative research communication uses found for videos within the different subject areas.
  10. Sugimoto, C.R.; Thelwall, M.: Scholars on soap boxes : science communication and dissemination in TED videos (2013) 0.01
    0.011501143 = product of:
      0.023002286 = sum of:
        0.023002286 = product of:
          0.04600457 = sum of:
            0.04600457 = weight(_text_:online in 678) [ClassicSimilarity], result of:
              0.04600457 = score(doc=678,freq=6.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.29038906 = fieldWeight in 678, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=678)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Online videos provide a novel, and often interactive, platform for the popularization of science. One successful collection is hosted on the TED (Technology, Entertainment, Design) website. This study uses a range of bibliometric (citation) and webometric (usage and bookmarking) indicators to examine TED videos in order to provide insights into the type and scope of their impact. The results suggest that TED Talks impact primarily the public sphere, with about three-quarters of a billion total views, rather than the academic realm. Differences were found among broad disciplinary areas, with art and design videos having generally lower levels of impact but science and technology videos generating otherwise average impact for TED. Many of the metrics were only loosely related, but there was a general consensus about the most popular videos as measured through views or comments on YouTube and the TED site. Moreover, most videos were found in at least one online syllabus and videos in online syllabi tended to be more viewed, discussed, and blogged. Less-liked videos generated more discussion, although this may be because they are more controversial. Science and technology videos presented by academics were more liked than those by nonacademics, showing that academics are not disadvantaged in this new media environment.
  11. Shifman, L.; Thelwall, M.: Assessing global diffusion with Web memetics : the spread and evolution of a popular joke (2009) 0.01
    0.011268772 = product of:
      0.022537544 = sum of:
        0.022537544 = product of:
          0.04507509 = sum of:
            0.04507509 = weight(_text_:online in 3303) [ClassicSimilarity], result of:
              0.04507509 = score(doc=3303,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.284522 = fieldWeight in 3303, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3303)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Memes are small units of culture, analogous to genes, which flow from person to person by copying or imitation. More than any previous medium, the Internet has the technical capabilities for global meme diffusion. Yet, to spread globally, memes need to negotiate their way through cultural and linguistic borders. This article introduces a new broad method, Web memetics, comprising extensive Web searches and combined quantitative and qualitative analyses, to identify and assess: (a) the different versions of a meme, (b) its evolution online, and (c) its Web presence and translation into common Internet languages. This method is demonstrated through one extensively circulated joke about men, women, and computers. The results show that the joke has mutated into several different versions and is widely translated, and that translations incorporate small, local adaptations while retaining the English versions' fundamental components. In conclusion, Web memetics has demonstrated its ability to identify and track the evolution and spread of memes online, with interesting results, albeit for only one case study.
  12. Thelwall, M.: Webometrics (2009) 0.01
    0.011268772 = product of:
      0.022537544 = sum of:
        0.022537544 = product of:
          0.04507509 = sum of:
            0.04507509 = weight(_text_:online in 3906) [ClassicSimilarity], result of:
              0.04507509 = score(doc=3906,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.284522 = fieldWeight in 3906, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3906)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Webometrics is an information science field concerned with measuring aspects of the World Wide Web (WWW) for a variety of information science research goals. It came into existence about five years after the Web was formed and has since grown to become a significant aspect of information science, at least in terms of published research. Although some webometrics research has focused on the structure or evolution of the Web itself or the performance of commercial search engines, most has used data from the Web to shed light on information provision or online communication in various contexts. Most prominently, techniques have been developed to track, map, and assess Web-based informal scholarly communication, for example, in terms of the hyperlinks between academic Web sites or the online impact of digital repositories. In addition, a range of nonacademic issues and groups of Web users have also been analyzed.
  13. Kousha, K.; Thelwall, M.: Can Amazon.com reviews help to assess the wider impacts of books? (2016) 0.01
    0.011268772 = product of:
      0.022537544 = sum of:
        0.022537544 = product of:
          0.04507509 = sum of:
            0.04507509 = weight(_text_:online in 2768) [ClassicSimilarity], result of:
              0.04507509 = score(doc=2768,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.284522 = fieldWeight in 2768, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2768)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although citation counts are often used to evaluate the research impact of academic publications, they are problematic for books that aim for educational or cultural impact. To fill this gap, this article assesses whether a number of simple metrics derived from Amazon.com reviews of academic books could provide evidence of their impact. Based on a set of 2,739 academic monographs from 2008 and a set of 1,305 best-selling books in 15 Amazon.com academic subject categories, the existence of significant but low or moderate correlations between citations and numbers of reviews, combined with other evidence, suggests that online book reviews tend to reflect the wider popularity of a book rather than its academic impact, although there are substantial disciplinary differences. Metrics based on online reviews are therefore recommended for the evaluation of books that aim at a wide audience inside or outside academia when it is important to capture the broader impacts of educational or cultural activities and when they cannot be manipulated in advance of the evaluation.
  14. Thelwall, M.; Buckley, K.; Paltoglou, G.: Sentiment in Twitter events (2011) 0.01
    0.010608707 = product of:
      0.021217413 = sum of:
        0.021217413 = product of:
          0.042434826 = sum of:
            0.042434826 = weight(_text_:22 in 4345) [ClassicSimilarity], result of:
              0.042434826 = score(doc=4345,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23214069 = fieldWeight in 4345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4345)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2011 14:27:06
  15. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.01
    0.010608707 = product of:
      0.021217413 = sum of:
        0.021217413 = product of:
          0.042434826 = sum of:
            0.042434826 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.042434826 = score(doc=2856,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    19. 3.2016 12:22:00
  16. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.01
    0.010608707 = product of:
      0.021217413 = sum of:
        0.021217413 = product of:
          0.042434826 = sum of:
            0.042434826 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.042434826 = score(doc=3211,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16.11.2016 11:07:22
  17. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.01
    0.010608707 = product of:
      0.021217413 = sum of:
        0.021217413 = product of:
          0.042434826 = sum of:
            0.042434826 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.042434826 = score(doc=4291,freq=2.0), product of:
                0.18279788 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    28. 7.2018 10:00:22
  18. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.01
    0.009390644 = product of:
      0.018781288 = sum of:
        0.018781288 = product of:
          0.037562575 = sum of:
            0.037562575 = weight(_text_:online in 337) [ClassicSimilarity], result of:
              0.037562575 = score(doc=337,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23710167 = fieldWeight in 337, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
  19. Thelwall, M.: Social networks, gender, and friending : an analysis of MySpace member profiles (2008) 0.01
    0.009390644 = product of:
      0.018781288 = sum of:
        0.018781288 = product of:
          0.037562575 = sum of:
            0.037562575 = weight(_text_:online in 1883) [ClassicSimilarity], result of:
              0.037562575 = score(doc=1883,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23710167 = fieldWeight in 1883, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1883)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In 2007, the social networking Web site MySpace apparently overthrew Google as the most visited Web site for U.S. Web users. If this heralds a new era of widespread online social networking, then it is important to investigate user behaviour and attributes. Although there has been some research into social networking already, basic demographic data is essential to set previous results in a wider context and to give insights to researchers, marketers and developers. In this article, the demographics of MySpace members are explored through data extracted from two samples of 15,043 and 7,627 member profiles. The median declared age of users was surprisingly high at 21, with a small majority of females. The analysis confirmed some previously reported findings and conjectures about social networking, for example, that female members tend to be more interested in friendship and males more interested in dating. In addition, there was some evidence of three different friending dynamics, oriented towards close friends, acquaintances, or strangers. Perhaps unsurprisingly, female and younger members had more friends than others, and females were more likely to maintain private profiles, but both males and females seemed to prefer female friends, with this tendency more marked in females for their closest friend. The typical MySpace user is apparently female, 21, single, with a public profile, interested in online friendship and logging on weekly to engage with a mixed list of mainly female friends who are predominantly acquaintances.
  20. Kousha, K.; Thelwall, M.; Rezaie, S.: Can the impact of scholarly images be assessed online? : an exploratory study using image identification technology (2010) 0.01
    0.009390644 = product of:
      0.018781288 = sum of:
        0.018781288 = product of:
          0.037562575 = sum of:
            0.037562575 = weight(_text_:online in 3966) [ClassicSimilarity], result of:
              0.037562575 = score(doc=3966,freq=4.0), product of:
                0.15842392 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.05220068 = queryNorm
                0.23710167 = fieldWeight in 3966, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3966)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The web contains a huge number of digital pictures. For scholars publishing such images it is important to know how well used their images are, but no method seems to have been developed for monitoring the value of academic images. In particular, can the impact of scientific or artistic images be assessed through identifying images copied or reused on the Internet? This article explores a case study of 260 NASA images to investigate whether the TinEye search engine could theoretically help to provide this information. The results show that the selected pictures had a median of 11 online copies each. However, a classification of 210 of these copies reveals that only 1.4% were explicitly used in academic publications, reflecting research impact, and the majority of the NASA pictures were used for informal scholarly (or educational) communication (37%). Additional analyses of world famous paintings and scientific images about pathology and molecular structures suggest that image contents are important for the type and extent of image use. Although it is reasonable to use statistics derived from TinEye for assessing image reuse value, the extent of its image indexing is not known.