Search (59 results, page 1 of 3)

  • × theme_ss:"Visualisierung"
  1. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.08
    0.0818028 = product of:
      0.12270419 = sum of:
        0.05455074 = weight(_text_:book in 3070) [ClassicSimilarity], result of:
          0.05455074 = score(doc=3070,freq=2.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.2438483 = fieldWeight in 3070, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3070)
        0.068153456 = sum of:
          0.033821285 = weight(_text_:search in 3070) [ClassicSimilarity], result of:
            0.033821285 = score(doc=3070,freq=2.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.19200584 = fieldWeight in 3070, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3070)
          0.034332175 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
            0.034332175 = score(doc=3070,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.19345059 = fieldWeight in 3070, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3070)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to investigate user experiences with a touch-wall interface featuring both clustering and categorization representations of available e-books in a public library to understand human information interactions under work-focused and recreational contexts. Design/methodology/approach - Researchers collected questionnaires from 251 New Taipei City Library visitors who used the touch-wall interface to search for new titles. The authors applied structural equation modelling to examine relationships among hedonic/utilitarian needs, clustering and categorization representations, perceived ease of use (EU) and the extent to which users experienced anxiety and uncertainty (AU) while interacting with the interface. Findings - Utilitarian users who have an explicit idea of what they intend to find tend to prefer the categorization interface. A hedonic-oriented user tends to prefer clustering interfaces. Users reported EU regardless of which interface they engaged with. Results revealed that use of the clustering interface had a negative correlation with AU. Users that seek to satisfy utilitarian needs tended to emphasize the importance of perceived EU, whilst pleasure-seeking users were a little more tolerant of anxiety or uncertainty. Originality/value - The Online Public Access Catalogue (OPAC) encourages library visitors to borrow digital books through the implementation of an information visualization system. This situation poses an opportunity to validate uses and gratification theory. People with hedonic/utilitarian needs displayed different risk-control attitudes and affected uncertainty using the interface. Knowledge about user interaction with such interfaces is vital when launching the development of a new OPAC.
    Date
    20. 1.2015 18:30:22
  2. Hearst, M.A.: Search user interfaces (2009) 0.08
    0.07722079 = product of:
      0.11583118 = sum of:
        0.061717123 = weight(_text_:book in 4029) [ClassicSimilarity], result of:
          0.061717123 = score(doc=4029,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.27588287 = fieldWeight in 4029, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=4029)
        0.054114055 = product of:
          0.10822811 = sum of:
            0.10822811 = weight(_text_:search in 4029) [ClassicSimilarity], result of:
              0.10822811 = score(doc=4029,freq=32.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.6144187 = fieldWeight in 4029, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4029)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book outlines the human side of the information seeking process, and focuses on the aspects of this process that can best be supported by the user interface. It describes the methods behind user interface design generally, and search interface design in particular, with an emphasis on how best to evaluate search interfaces. It discusses research results and current practices surrounding user interfaces for query specification, display of retrieval results, grouping retrieval results, navigation of information collections, query reformulation, search personalization, and the broader tasks of sensemaking and text analysis. Much of the discussion pertains to Web search engines, but the book also covers the special considerations surrounding search of other information collections.
    Content
    Inhalt: The design of search user interfaces -- The evaluation of search user interfaces -- Models of the information seeking process -- Query specification -- Presentation of search results -- Query reformulation -- Supporting the search process -- Integrating navigation with search -- Personalization in search -- Information visualization for search interfaces -- Information visualization for text analysis -- Emerging trends in search interfaces. Vgl. die digitale Fassung unter: http://searchuserinterfaces.com.
    LCSH
    Web search engines
    Subject
    Web search engines
  3. Visual thesaurus (2005) 0.07
    0.06500681 = product of:
      0.0975102 = sum of:
        0.061717123 = weight(_text_:book in 1292) [ClassicSimilarity], result of:
          0.061717123 = score(doc=1292,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.27588287 = fieldWeight in 1292, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=1292)
        0.035793085 = product of:
          0.07158617 = sum of:
            0.07158617 = weight(_text_:search in 1292) [ClassicSimilarity], result of:
              0.07158617 = score(doc=1292,freq=14.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.4063998 = fieldWeight in 1292, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1292)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A visual thesaurus system and method for displaying a selected term in association with its one or more meanings, other words to which it is related, and further relationship information. The results of a search are presented in a directed graph that provides more information than an ordered list. When a user selects one of the results, the display reorganizes around the user's search allowing for further searches, without the interruption of going to additional pages.
    Content
    Traditional print reference guides often have two methods of finding information: an order (alphabetical for dictionaries and encyclopedias, by subject hierarchy in the case of thesauri) and indices (ordered lists, with a more complete listing of words and concepts, which refers back to original content from the main body of the book). A user of such traditional print reference guides who is looking for information will either browse through the ordered information in the main body of the reference book, or scan through the indices to find what is necessary. The advent of the computer allows for much more rapid electronic searches of the same information, and for multiple layers of indices. Users can either search through information by entering a keyword, or users can browse through the information through an outline index, which represents the information contained in the main body of the data. There are two traditional user interfaces for such applications. First, the user may type text into a search field and in response, a list of results is returned to the user. The user then selects a returned entry and may page through the resulting information. Alternatively, the user may choose from a list of words from an index. For example, software thesaurus applications, in which a user attempts to find synonyms, antonyms, homonyms, etc. for a selected word, are usually implemented using the conventional search and presentation techniques discussed above. The presentation of results only allows for a one-dimensional order of data at any one time. In addition, only a limited number of results can be shown at once, and selecting a result inevitably leads to another page-if the result is not satisfactory, the users must search again. Finally, it is difficult to present information about the manner in which the search results are related, or to present quantitative information about the results without causing confusion. Therefore, there exists a need for a multidimensional graphical display of information, in particular with respect to information relating to the meaning of words and their relationships to other words. There further exists a need to present large amounts of information in a way that can be manipulated by the user, without the user losing his place. And there exists a need for more fluid, intuitive and powerful thesaurus functionality that invites the exploration of language.
  4. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.06
    0.062874995 = product of:
      0.09431249 = sum of:
        0.0771464 = weight(_text_:book in 1397) [ClassicSimilarity], result of:
          0.0771464 = score(doc=1397,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.34485358 = fieldWeight in 1397, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1397)
        0.017166087 = product of:
          0.034332175 = sum of:
            0.034332175 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
              0.034332175 = score(doc=1397,freq=2.0), product of:
                0.17747258 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679956 = queryNorm
                0.19345059 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1397)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The "Screen Design Manual" provides designers of interactive media with a practical working guide for preparing and presenting information that is suitable for both their target groups and the media they are using. It describes background information and relationships, clarifies them with the help of examples, and encourages further development of the language of digital media. In addition to the basics of the psychology of perception and learning, ergonomics, communication theory, imagery research, and aesthetics, the book also explores the design of navigation and orientation elements. Guidelines and checklists, along with the unique presentation of the book, support the application of information in practice.
    Date
    22. 3.2008 14:29:25
  5. Dushay, N.: Visualizing bibliographic metadata : a virtual (book) spine viewer (2004) 0.06
    0.055555932 = product of:
      0.083333895 = sum of:
        0.07318751 = weight(_text_:book in 1197) [ClassicSimilarity], result of:
          0.07318751 = score(doc=1197,freq=10.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.32715684 = fieldWeight in 1197, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1197)
        0.010146385 = product of:
          0.02029277 = sum of:
            0.02029277 = weight(_text_:search in 1197) [ClassicSimilarity], result of:
              0.02029277 = score(doc=1197,freq=2.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.1152035 = fieldWeight in 1197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1197)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    User interfaces for digital information discovery often require users to click around and read a lot of text in order to find the text they want to read-a process that is often frustrating and tedious. This is exacerbated because of the limited amount of text that can be displayed on a computer screen. To improve the user experience of computer mediated information discovery, information visualization techniques are applied to the digital library context, while retaining traditional information organization concepts. In this article, the "virtual (book) spine" and the virtual spine viewer are introduced. The virtual spine viewer is an application which allows users to visually explore large information spaces or collections while also allowing users to hone in on individual resources of interest. The virtual spine viewer introduced here is an alpha prototype, presented to promote discussion and further work. Information discovery changed radically with the introduction of computerized library access catalogs, the World Wide Web and its search engines, and online bookstores. Yet few instances of these technologies provide a user experience analogous to walking among well-organized, well-stocked bookshelves-which many people find useful as well as pleasurable. To put it another way, many of us have heard or voiced complaints about the paucity of "online browsing"-but what does this really mean? In traditional information spaces such as libraries, often we can move freely among the books and other resources. When we walk among organized, labeled bookshelves, we get a sense of the information space-we take in clues, perhaps unconsciously, as to the scope of the collection, the currency of resources, the frequency of their use, etc. We also enjoy unexpected discoveries such as finding an interesting resource because library staff deliberately located it near similar resources, or because it was miss-shelved, or because we saw it on a bookshelf on the way to the water fountain.
    When our experience of information discovery is mediated by a computer, we neither move ourselves nor the monitor. We have only the computer's monitor to view, and the keyboard and/or mouse to manipulate what is displayed there. Computer interfaces often reduce our ability to get a sense of the contents of a library: we don't perceive the scope of the library: its breadth, (the quantity of materials/information), its density (how full the shelves are, how thorough the collection is for individual topics), or the general audience for the materials (e.g., whether the materials are appropriate for middle school students, college professors, etc.). Additionally, many computer interfaces for information discovery require users to scroll through long lists, to click numerous navigational links and to read a lot of text to find the exact text they want to read. Text features of resources are almost always presented alphabetically, and the number of items in these alphabetical lists sometimes can be very long. Alphabetical ordering is certainly an improvement over no ordering, but it generally has no bearing on features with an inherent non-alphabetical ordering (e.g., dates of historical events), nor does it necessarily group similar items together. Alphabetical ordering of resources is analogous to one of the most familiar complaints about dictionaries: sometimes you need to know how to spell a word in order to look up its correct spelling in the dictionary. Some have used technology to replicate the appearance of physical libraries, presenting rooms of bookcases and shelves of book spines in virtual 3D environments. This approach presents a problem, as few book spines can be displayed legibly on a monitor screen. This article examines the role of book spines, call numbers, and other traditional organizational and information discovery concepts, and integrates this knowledge with information visualization techniques to show how computers and monitors can meet or exceed similar information discovery methods. The goal is to tap the unique potentials of current information visualization approaches in order to improve information discovery, offer new services, and most important of all, improve user satisfaction. We need to capitalize on what computers do well while bearing in mind their limitations. The intent is to design GUIs to optimize utility and provide a positive experience for the user.
  6. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.05
    0.050299995 = product of:
      0.07544999 = sum of:
        0.061717123 = weight(_text_:book in 1444) [ClassicSimilarity], result of:
          0.061717123 = score(doc=1444,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.27588287 = fieldWeight in 1444, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=1444)
        0.013732869 = product of:
          0.027465738 = sum of:
            0.027465738 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.027465738 = score(doc=1444,freq=2.0), product of:
                0.17747258 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679956 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  7. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.05
    0.047094822 = product of:
      0.14128447 = sum of:
        0.14128447 = sum of:
          0.10695229 = weight(_text_:search in 4573) [ClassicSimilarity], result of:
            0.10695229 = score(doc=4573,freq=20.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.60717577 = fieldWeight in 4573, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4573)
          0.034332175 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
            0.034332175 = score(doc=4573,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.19345059 = fieldWeight in 4573, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4573)
      0.33333334 = coord(1/3)
    
    Abstract
    This study explores how user subject knowledge influences search task processes and outcomes, as well as how search behavior is influenced by subject-oriented information visualization (IV) tools. To enable integrated searches, the proposed WikiMap + integrates search functions and IV tools (i.e., a topic network and hierarchical topic tree) and gathers information from Wikipedia pages and Google Search results. To evaluate the effectiveness of the proposed interfaces, we design subject-oriented tasks and adopt extended evaluation measures. We recruited 48 novices and 48 knowledgeable users, that is, intermediates, for the evaluation. Our results show that novices using the proposed interface demonstrate better search performance than intermediates using Wikipedia. We therefore conclude that our tools help close the gap between novices and intermediates in information searches. The results also show that intermediates can take advantage of the search tool by leveraging the IV tools to browse subtopics, and formulate better queries with less effort. We conclude that embedding the IV and the search tools in the interface can result in different search behavior but improved task performance. We provide implications to design search systems to include IV features adapted to user levels of subject knowledge to help them achieve better task performance.
    Date
    9.12.2018 16:22:25
  8. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.05
    0.045435637 = product of:
      0.13630691 = sum of:
        0.13630691 = sum of:
          0.06764257 = weight(_text_:search in 2755) [ClassicSimilarity], result of:
            0.06764257 = score(doc=2755,freq=2.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.3840117 = fieldWeight in 2755, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.078125 = fieldNorm(doc=2755)
          0.06866435 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
            0.06866435 = score(doc=2755,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.38690117 = fieldWeight in 2755, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=2755)
      0.33333334 = coord(1/3)
    
    Date
    1. 2.2016 18:25:22
    Source
    Semantic keyword-based search on structured data sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers. Eds.: J. Cardoso et al
  9. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.04
    0.041848537 = product of:
      0.0627728 = sum of:
        0.043640595 = weight(_text_:book in 79) [ClassicSimilarity], result of:
          0.043640595 = score(doc=79,freq=2.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.19507864 = fieldWeight in 79, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        0.019132208 = product of:
          0.038264416 = sum of:
            0.038264416 = weight(_text_:search in 79) [ClassicSimilarity], result of:
              0.038264416 = score(doc=79,freq=4.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.21722981 = fieldWeight in 79, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=79)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Series
    Lecture notes on data engineering and communications technologies book series; vol.32
  10. Information visualization : human-centered issues and perspectives (2008) 0.03
    0.025715468 = product of:
      0.0771464 = sum of:
        0.0771464 = weight(_text_:book in 3285) [ClassicSimilarity], result of:
          0.0771464 = score(doc=3285,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.34485358 = fieldWeight in 3285, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3285)
      0.33333334 = coord(1/3)
    
    Abstract
    This book is the outcome of the Dagstuhl Seminar on "Information Visualization - Human-Centered Issues in Visual Representation, Interaction, and Evaluation" held at Dagstuhl Castle, Germany, from May 28 to June 1, 2007. Information Visualization (InfoVis) is a relatively new research area, which focuses on the use of visualization techniques to help people understand and analyze data.This book documents and extends the findings and discussions of the various sessions in detail. The seven contributions cover the most important topics: Part I is on general reflections on the value of information visualization; evaluating information visualizations; theoretical foundations of information visualization; teaching information visualization. Part II deals with specific aspects on creation and collaboration: engaging new audiences for information visualization; process and pitfalls in writing information visualization research papers; and visual analytics: definition, process, and challenges.
  11. Hook, P.A.; Gantchev, A.: Using combined metadata sources to visualize a small library (OBL's English Language Books) (2017) 0.03
    0.025715468 = product of:
      0.0771464 = sum of:
        0.0771464 = weight(_text_:book in 3870) [ClassicSimilarity], result of:
          0.0771464 = score(doc=3870,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.34485358 = fieldWeight in 3870, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3870)
      0.33333334 = coord(1/3)
    
    Abstract
    Data from multiple knowledge organization systems are combined to provide a global overview of the content holdings of a small personal library. Subject headings and classification data are used to effectively map the combined book and topic space of the library. While harvested and manipulated by hand, the work reveals issues and potential solutions when using automated techniques to produce topic maps of much larger libraries. The small library visualized consists of the thirty-nine, digital, English language books found in the Osama Bin Laden (OBL) compound in Abbottabad, Pakistan upon his death. As this list of books has garnered considerable media attention, it is worth providing a visual overview of the subject content of these books - some of which is not readily apparent from the titles. Metadata from subject headings and classification numbers was combined to create book-subject maps. Tree maps of the classification data were also produced. The books contain 328 subject headings. In order to enhance the base map with meaningful thematic overlay, library holding count data was also harvested (and aggregated from duplicates). This additional data revealed the relative scarcity or popularity of individual books.
  12. Lin, X.; Bui, Y.: Information visualization (2009) 0.03
    0.025457015 = product of:
      0.076371044 = sum of:
        0.076371044 = weight(_text_:book in 3818) [ClassicSimilarity], result of:
          0.076371044 = score(doc=3818,freq=2.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.34138763 = fieldWeight in 3818, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3818)
      0.33333334 = coord(1/3)
    
    Footnote
    Vgl.: http://www.tandfonline.com/doi/book/10.1081/E-ELIS3.
  13. Wainer, H.: Picturing the uncertain world : how to understand, communicate, and control uncertainty through graphical display (2009) 0.02
    0.020572376 = product of:
      0.061717123 = sum of:
        0.061717123 = weight(_text_:book in 1451) [ClassicSimilarity], result of:
          0.061717123 = score(doc=1451,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.27588287 = fieldWeight in 1451, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=1451)
      0.33333334 = coord(1/3)
    
    Abstract
    In his entertaining and informative book "Graphic Discovery", Howard Wainer unlocked the power of graphical display to make complex problems clear. Now he's back with Picturing the Uncertain World, a book that explores how graphs can serve as maps to guide us when the information we have is ambiguous or incomplete. Using a visually diverse sampling of graphical display, from heartrending autobiographical displays of genocide in the Kovno ghetto to the 'Pie Chart of Mystery' in a "New Yorker" cartoon, Wainer illustrates the many ways graphs can be used - and misused - as we try to make sense of an uncertain world. "Picturing the Uncertain World" takes readers on an extraordinary graphical adventure, revealing how the visual communication of data offers answers to vexing questions yet also highlights the measure of uncertainty in almost everything we do. Are cancer rates higher or lower in rural communities? How can you know how much money to sock away for retirement when you don't know when you'll die? And where exactly did nineteenth-century novelists get their ideas? These are some of the fascinating questions Wainer invites readers to consider. Along the way he traces the origins and development of graphical display, from William Playfair, who pioneered the use of graphs in the eighteenth century, to instances today where the public has been misled through poorly designed graphs. We live in a world full of uncertainty, yet it is within our grasp to take its measure. Read "Picturing the Uncertain World" and learn how.
  14. Ahn, J.-w.; Brusilovsky, P.: Adaptive visualization for exploratory information retrieval (2013) 0.02
    0.020324064 = product of:
      0.06097219 = sum of:
        0.06097219 = product of:
          0.12194438 = sum of:
            0.12194438 = weight(_text_:search in 2717) [ClassicSimilarity], result of:
              0.12194438 = score(doc=2717,freq=26.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.69228697 = fieldWeight in 2717, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2717)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    As the volume and breadth of online information is rapidly increasing, ad hoc search systems become less and less efficient to answer information needs of modern users. To support the growing complexity of search tasks, researchers in the field of information developed and explored a range of approaches that extend the traditional ad hoc retrieval paradigm. Among these approaches, personalized search systems and exploratory search systems attracted many followers. Personalized search explored the power of artificial intelligence techniques to provide tailored search results according to different user interests, contexts, and tasks. In contrast, exploratory search capitalized on the power of human intelligence by providing users with more powerful interfaces to support the search process. As these approaches are not contradictory, we believe that they can re-enforce each other. We argue that the effectiveness of personalized search systems may be increased by allowing users to interact with the system and learn/investigate the problem in order to reach the final goal. We also suggest that an interactive visualization approach could offer a good ground to combine the strong sides of personalized and exploratory search approaches. This paper proposes a specific way to integrate interactive visualization and personalized search and introduces an adaptive visualization based search system Adaptive VIBE that implements it. We tested the effectiveness of Adaptive VIBE and investigated its strengths and weaknesses by conducting a full-scale user study. The results show that Adaptive VIBE can improve the precision and the productivity of the personalized search system while helping users to discover more diverse sets of information.
  15. Hoeber, O.: ¬A study of visually linked keywords to support exploratory browsing in academic search (2022) 0.02
    0.02029277 = product of:
      0.06087831 = sum of:
        0.06087831 = product of:
          0.12175662 = sum of:
            0.12175662 = weight(_text_:search in 644) [ClassicSimilarity], result of:
              0.12175662 = score(doc=644,freq=18.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.691221 = fieldWeight in 644, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.046875 = fieldNorm(doc=644)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    While the search interfaces used by common academic digital libraries provide easy access to a wealth of peer-reviewed literature, their interfaces provide little support for exploratory browsing. When faced with a complex search task (such as one that requires knowledge discovery), exploratory browsing is an important first step in an exploratory search process. To more effectively support exploratory browsing, we have designed and implemented a novel academic digital library search interface (KLink Search) with two new features: visually linked keywords and an interactive workspace. To study the potential value of these features, we have conducted a controlled laboratory study with 32 participants, comparing KLink Search to a baseline digital library search interface modeled after that used by IEEE Xplore. Based on subjective opinions, objective performance, and behavioral data, we show the value of adding lightweight visual and interactive features to academic digital library search interfaces to support exploratory browsing.
  16. Information visualization in data mining and knowledge discovery (2002) 0.02
    0.01912449 = product of:
      0.028686732 = sum of:
        0.021820297 = weight(_text_:book in 1789) [ClassicSimilarity], result of:
          0.021820297 = score(doc=1789,freq=2.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.09753932 = fieldWeight in 1789, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.0068664346 = product of:
          0.013732869 = sum of:
            0.013732869 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.013732869 = score(doc=1789,freq=2.0), product of:
                0.17747258 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679956 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
  17. Hoeber, O.; Yang, X.D.: HotMap : supporting visual exploration of Web search results (2009) 0.02
    0.018695418 = product of:
      0.056086253 = sum of:
        0.056086253 = product of:
          0.11217251 = sum of:
            0.11217251 = weight(_text_:search in 2700) [ClassicSimilarity], result of:
              0.11217251 = score(doc=2700,freq=22.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.6368113 = fieldWeight in 2700, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2700)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Although information retrieval techniques used by Web search engines have improved substantially over the years, the results of Web searches have continued to be represented in simple list-based formats. Although the list-based representation makes it easy to evaluate a single document for relevance, it does not support the users in the broader tasks of manipulating or exploring the search results as they attempt to find a collection of relevant documents. HotMap is a meta-search system that provides a compact visual representation of Web search results at two levels of detail, and it supports interactive exploration via nested sorting of Web search results based on query term frequencies. An evaluation of the search results for a set of vague queries has shown that the re-sorted search results can provide a higher portion of relevant documents among the top search results. User studies show an increase in speed and effectiveness and a reduction in missed documents when comparing HotMap to the list-based representation used by Google. Subjective measures were positive, and users showed a preference for the HotMap interface. These results provide evidence for the utility of next-generation Web search results interfaces that promote interactive search results exploration.
  18. Sahib, N.G.; Tombros, A.; Stockman, T.: Evaluating a search interface for visually impaired searchers (2015) 0.02
    0.015943509 = product of:
      0.047830522 = sum of:
        0.047830522 = product of:
          0.095661044 = sum of:
            0.095661044 = weight(_text_:search in 2255) [ClassicSimilarity], result of:
              0.095661044 = score(doc=2255,freq=16.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.54307455 = fieldWeight in 2255, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2255)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Understanding the information-seeking behavior of visually impaired users is essential to designing search interfaces that support them during their search tasks. In a previous article, we reported the information-seeking behavior of visually impaired users when performing complex search tasks on the web, and we examined the difficulties encountered when interacting with search interfaces via speech-based screen readers. In this article, we use our previous findings to inform the design of a search interface to support visually impaired users for complex information seeking. We particularly focus on implementing TrailNote, a tool to support visually impaired searchers in managing the search process, and we also redesign the spelling-support mechanism using nonspeech sounds to address previously observed difficulties in interacting with this feature. To enhance the user experience, we have designed interface features to be technically accessible as well as usable with speech-based screen readers. We have evaluated the proposed interface with 12 visually impaired users and studied how they interacted with the interface components. Our findings show that the search interface was effective in supporting participants for complex information seeking and that the proposed interface features were accessible and usable with speech-based screen readers.
  19. Schallier, W.: What a subject search interface can do (2004) 0.02
    0.015783267 = product of:
      0.0473498 = sum of:
        0.0473498 = product of:
          0.0946996 = sum of:
            0.0946996 = weight(_text_:search in 3475) [ClassicSimilarity], result of:
              0.0946996 = score(doc=3475,freq=2.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.5376164 = fieldWeight in 3475, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3475)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  20. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.01
    0.014260306 = product of:
      0.042780917 = sum of:
        0.042780917 = product of:
          0.085561834 = sum of:
            0.085561834 = weight(_text_:search in 2643) [ClassicSimilarity], result of:
              0.085561834 = score(doc=2643,freq=20.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.48574063 = fieldWeight in 2643, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Selection of search terms in an online search environment can be facilitated by the visual display of a knowledge map showing the various concepts and their links. This paper reports an a preliminary research aimed at designing a prototype knowledge map using DDC and its visual display. The prototype knowledge map created using the Protégé and TGViz freeware has been demonstrated, and further areas of research in this field are discussed.
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).

Years

Languages

  • e 52
  • d 6
  • a 1
  • More… Less…

Types

  • a 44
  • el 12
  • m 9
  • x 3
  • b 1
  • p 1
  • s 1
  • More… Less…