Search (976 results, page 1 of 49)

  • × type_ss:"m"
  1. Ceri, S.; Bozzon, A.; Brambilla, M.; Della Valle, E.; Fraternali, P.; Quarteroni, S.: Web Information Retrieval (2013) 0.12
    0.116496466 = product of:
      0.1747447 = sum of:
        0.061717123 = weight(_text_:book in 1082) [ClassicSimilarity], result of:
          0.061717123 = score(doc=1082,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.27588287 = fieldWeight in 1082, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=1082)
        0.11302757 = sum of:
          0.085561834 = weight(_text_:search in 1082) [ClassicSimilarity], result of:
            0.085561834 = score(doc=1082,freq=20.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.48574063 = fieldWeight in 1082, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.03125 = fieldNorm(doc=1082)
          0.027465738 = weight(_text_:22 in 1082) [ClassicSimilarity], result of:
            0.027465738 = score(doc=1082,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.15476047 = fieldWeight in 1082, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1082)
      0.6666667 = coord(2/3)
    
    Abstract
    With the proliferation of huge amounts of (heterogeneous) data on the Web, the importance of information retrieval (IR) has grown considerably over the last few years. Big players in the computer industry, such as Google, Microsoft and Yahoo!, are the primary contributors of technology for fast access to Web-based information; and searching capabilities are now integrated into most information systems, ranging from business management software and customer relationship systems to social networks and mobile phone applications. Ceri and his co-authors aim at taking their readers from the foundations of modern information retrieval to the most advanced challenges of Web IR. To this end, their book is divided into three parts. The first part addresses the principles of IR and provides a systematic and compact description of basic information retrieval techniques (including binary, vector space and probabilistic models as well as natural language search processing) before focusing on its application to the Web. Part two addresses the foundational aspects of Web IR by discussing the general architecture of search engines (with a focus on the crawling and indexing processes), describing link analysis methods (specifically Page Rank and HITS), addressing recommendation and diversification, and finally presenting advertising in search (the main source of revenues for search engines). The third and final part describes advanced aspects of Web search, each chapter providing a self-contained, up-to-date survey on current Web research directions. Topics in this part include meta-search and multi-domain search, semantic search, search in the context of multimedia data, and crowd search. The book is ideally suited to courses on information retrieval, as it covers all Web-independent foundational aspects. Its presentation is self-contained and does not require prior background knowledge. It can also be used in the context of classic courses on data management, allowing the instructor to cover both structured and unstructured data in various formats. Its classroom use is facilitated by a set of slides, which can be downloaded from www.search-computing.org.
    Date
    16.10.2013 19:22:44
  2. Kuhlthau, C.C.: Seeking meaning : a process approach to library and information services (2003) 0.11
    0.11474694 = product of:
      0.1721204 = sum of:
        0.1309218 = weight(_text_:book in 4585) [ClassicSimilarity], result of:
          0.1309218 = score(doc=4585,freq=2.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.58523595 = fieldWeight in 4585, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.09375 = fieldNorm(doc=4585)
        0.041198608 = product of:
          0.082397215 = sum of:
            0.082397215 = weight(_text_:22 in 4585) [ClassicSimilarity], result of:
              0.082397215 = score(doc=4585,freq=2.0), product of:
                0.17747258 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679956 = queryNorm
                0.46428138 = fieldWeight in 4585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4585)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    First published in 1993, this book presents a new process approach to library and information services.
    Date
    25.11.2005 18:58:22
  3. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.11
    0.110276364 = product of:
      0.16541454 = sum of:
        0.038185522 = weight(_text_:book in 2752) [ClassicSimilarity], result of:
          0.038185522 = score(doc=2752,freq=2.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.17069381 = fieldWeight in 2752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.12722902 = sum of:
          0.103196494 = weight(_text_:search in 2752) [ClassicSimilarity], result of:
            0.103196494 = score(doc=2752,freq=38.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.5858539 = fieldWeight in 2752, product of:
                6.164414 = tf(freq=38.0), with freq of:
                  38.0 = termFreq=38.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2752)
          0.02403252 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
            0.02403252 = score(doc=2752,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.1354154 = fieldWeight in 2752, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=2752)
      0.6666667 = coord(2/3)
    
    Abstract
    The doctoral thesis of Tatiana Gossen formulates criteria and guidelines on how to design the user interfaces of search engines for children. In her work, the author identifies the conceptual challenges based on own and previous user studies and addresses the changing characteristics of the users by providing a means of adaptation. Additionally, a novel type of search result visualisation for children with cartoon style characters is developed taking children's preference for visual information into account.
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
  4. Web search engine research (2012) 0.11
    0.108581275 = product of:
      0.16287191 = sum of:
        0.09257569 = weight(_text_:book in 478) [ClassicSimilarity], result of:
          0.09257569 = score(doc=478,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.41382432 = fieldWeight in 478, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.046875 = fieldNorm(doc=478)
        0.07029622 = product of:
          0.14059244 = sum of:
            0.14059244 = weight(_text_:search in 478) [ClassicSimilarity], result of:
              0.14059244 = score(doc=478,freq=24.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.79815334 = fieldWeight in 478, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.046875 = fieldNorm(doc=478)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    "Web Search Engine Research", edited by Dirk Lewandowski, provides an understanding of Web search engines from the unique perspective of Library and Information Science. The book explores a range of topics including retrieval effectiveness, user satisfaction, the evaluation of search interfaces, the impact of search on society, reliability of search results, query log analysis, user guidance in the search process, and the influence of search engine optimization (SEO) on results quality. While research in computer science has mainly focused on technical aspects of search engines, LIS research is centred on users' behaviour when using search engines and how this interaction can be evaluated. LIS research provides a unique perspective in intermediating between the technical aspects, user aspects and their impact on their role in knowledge acquisition. This book is directly relevant to researchers and practitioners in library and information science, computer science, including Web researchers.
    LCSH
    Web search engines
    Subject
    Web search engines
  5. Anderson, J.D.; Perez-Carballo, J.: Information retrieval design : principles and options for information description, organization, display, and access in information retrieval databases, digital libraries, catalogs, and indexes (2005) 0.11
    0.1067259 = product of:
      0.16008885 = sum of:
        0.10910148 = weight(_text_:book in 1833) [ClassicSimilarity], result of:
          0.10910148 = score(doc=1833,freq=32.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.4876966 = fieldWeight in 1833, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.01953125 = fieldNorm(doc=1833)
        0.05098737 = sum of:
          0.033821285 = weight(_text_:search in 1833) [ClassicSimilarity], result of:
            0.033821285 = score(doc=1833,freq=8.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.19200584 = fieldWeight in 1833, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.01953125 = fieldNorm(doc=1833)
          0.017166087 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
            0.017166087 = score(doc=1833,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.09672529 = fieldWeight in 1833, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=1833)
      0.6666667 = coord(2/3)
    
    Content
    Inhalt: Chapters 2 to 5: Scopes, Domains, and Display Media (pp. 47-102) Chapters 6 to 8: Documents, Analysis, and Indexing (pp. 103-176) Chapters 9 to 10: Exhaustivity and Specificity (pp. 177-196) Chapters 11 to 13: Displayed/Nondisplayed Indexes, Syntax, and Vocabulary Management (pp. 197-364) Chapters 14 to 16: Surrogation, Locators, and Surrogate Displays (pp. 365-390) Chapters 17 and 18: Arrangement and Size of Displayed Indexes (pp. 391-446) Chapters 19 to 21: Search Interface, Record Format, and Full-Text Display (pp. 447-536) Chapter 22: Implementation and Evaluation (pp. 537-541)
    Footnote
    Rez. in JASIST 57(2006) no.10, S.1412-1413 (R. W. White): "Information Retrieval Design is a textbook that aims to foster the intelligent user-centered design of databases for Information Retrieval (IR). The book outlines a comprehensive set of 20 factors. chosen based on prior research and the authors' experiences. that need to he considered during the design process. The authors provide designers with information on those factors to help optimize decision making. The book does not cover user-needs assessment, implementation of IR databases, or retries al systems, testing. or evaluation. Most textbooks in IR do not offer a substantive walkthrough of the design factors that need to be considered Mien des eloping IR databases. Instead. they focus on issues such as the implementation of data structures, the explanation of search algorithms, and the role of human-machine interaction in the search process. The book touches on all three, but its focus is on designing databases that can be searched effectively. not the tools to search them. This is an important distinction: despite its title. this book does not describe how to build retrieval systems. Professor Anderson utilizes his wealth of experience in cataloging and classification to bring a unique perspective on IR database design that may be useful for novices. for developers seeking to make sense of the design process, and for students as a text to supplement classroom tuition. The foreword and preface. by Jessica Milstead and James Anderson. respectively, are engaging and worthwhile reading. It is astounding that it has taken some 20 years for anyone to continue the stork of Milstead and write as extensively as Anderson does about such an important issue as IR database design. The remainder of the book is divided into two parts: Introduction and Background Issues and Design Decisions. Part 1 is a reasonable introduction and includes a glossary of the terminology that authors use in the book. It is very helpful to have these definitions early on. but the subject descriptors in the right margin are distracting and do not serve their purpose as access points to the text. The terminology is useful to have. as the authors definitions of concepts do not lit exactly with what is traditionally accepted in IR. For example. they use the term 'message' to icier to what would normally be called .'document" or "information object." and do not do a good job at distinguishing between "messages" and "documentary units". Part 2 describes components and attributes of 1R databases to help designers make design choices. The book provides them with information about the potential ramifications of their decisions and advocates a user-oriented approach to making them. Chapters are arranged in a seemingly sensible order based around these factors. and the authors remind us of the importance of integrating them. The authors are skilled at selecting the important factors in the development of seemingly complex entities, such as IR databases: how es er. the integration of these factors. or the interaction between them. is not handled as well as perhaps should be. Factors are presented in the order in which the authors feel then should be addressed. but there is no chapter describing how the factors interact. The authors miss an opportunity at the beginning of Part 2 where they could illustrate using a figure the interactions between the 20 factors they list in a way that is not possible with the linear structure of the book.
    . . . Those interested in using the book to design IR databases can work through the chapters in the order provided and end up with a set of requirements for database design. The steps outlined in this book can be rearranged in numerous orders depending on the particular circumstances. This book would benefit from a discussion of what orders are appropriate for different circumstances and bow the requirements outlined interact. I come away from Information Retrieval Design with mixed, although mainly positive feelings. Even though the aims of this book are made clear from the outset, it was still a disappointment to see issues such as implementation and evaluation covered in only a cursory manner. The book is very well structured. well written, and operates in a part of the space that bas been neglected for too long. The authors whet my appetite with discussion of design, and I would have liked to have heard a bit more about what happens in requirements' elicitation before the design issues base been identified and to impIementation after they have been addressed. Overall, the book is a comprehensive review of previous research supplemented by the authors' views on IR design. This book focuses on breadth of coverage rather than depth of coverage and is therefore potentially of more use to novices in the field. The writing style is clear, and the authors knowledge of the subject area is undoubted. I wouId recommend this book to anyone who wants to learn about IR database design and take advantage of the experience and insights of Anderson, one of tile visionaries it the field."
  6. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.11
    0.105359 = product of:
      0.1580385 = sum of:
        0.094484664 = weight(_text_:book in 150) [ClassicSimilarity], result of:
          0.094484664 = score(doc=150,freq=24.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.42235768 = fieldWeight in 150, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.063553825 = sum of:
          0.033821285 = weight(_text_:search in 150) [ClassicSimilarity], result of:
            0.033821285 = score(doc=150,freq=8.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.19200584 = fieldWeight in 150, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
          0.029732537 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
            0.029732537 = score(doc=150,freq=6.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.16753313 = fieldWeight in 150, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
      0.6666667 = coord(2/3)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    Semantic web technologies are explained, and ontology representation is emphasized. There is an excellent summary of the fundamental theory behind applying a knowledge-engineering approach to vision problems. This summary represents the concept of the semantic web and multimedia content analysis. A definition of the fuzzy knowledge representation that can be used for realization in multimedia content applications has been provided, with a comprehensive analysis. The second part of the book introduces the multimedia content analysis approaches and applications. In addition, some examples of methods applicable to multimedia content analysis are presented. Multimedia content analysis is a very diverse field and concerns many other research fields at the same time; this creates strong diversity issues, as everything from low-level features (e.g., colors, DCT coefficients, motion vectors, etc.) up to the very high and semantic level (e.g., Object, Events, Tracks, etc.) are involved. The second part includes topics on structure identification (e.g., shot detection for video sequences), and object-based video indexing. These conventional analysis methods are supplemented by results on semantic multimedia analysis, including three detailed chapters on the development and use of knowledge models for automatic multimedia analysis. Starting from object-based indexing and continuing with machine learning, these three chapters are very logically organized. Because of the diversity of this research field, including several chapters of recent research results is not sufficient to cover the state of the art of multimedia. The editors of the book should write an introductory chapter about multimedia content analysis approaches, basic problems, and technical issues and challenges, and try to survey the state of the art of the field and thus introduce the field to the reader.
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
  7. Chakrabarti, S.: Mining the Web : discovering knowledge from hypertext data (2003) 0.10
    0.0963002 = product of:
      0.14445029 = sum of:
        0.13092178 = weight(_text_:book in 2222) [ClassicSimilarity], result of:
          0.13092178 = score(doc=2222,freq=18.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.5852359 = fieldWeight in 2222, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=2222)
        0.013528514 = product of:
          0.027057027 = sum of:
            0.027057027 = weight(_text_:search in 2222) [ClassicSimilarity], result of:
              0.027057027 = score(doc=2222,freq=2.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.15360467 = fieldWeight in 2222, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2222)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Rez. in: JASIST 55(2004) no.3, S.275-276 (C. Chen): "This is a book about finding significant statistical patterns on the Web - in particular, patterns that are associated with hypertext documents, topics, hyperlinks, and queries. The term pattern in this book refers to dependencies among such items. On the one hand, the Web contains useful information an just about every topic under the sun. On the other hand, just like searching for a needle in a haystack, one would need powerful tools to locate useful information an the vast land of the Web. Soumen Chakrabarti's book focuses an a wide range of techniques for machine learning and data mining an the Web. The goal of the book is to provide both the technical Background and tools and tricks of the trade of Web content mining. Much of the technical content reflects the state of the art between 1995 and 2002. The targeted audience is researchers and innovative developers in this area, as well as newcomers who intend to enter this area. The book begins with an introduction chapter. The introduction chapter explains fundamental concepts such as crawling and indexing as well as clustering and classification. The remaining eight chapters are organized into three parts: i) infrastructure, ii) learning and iii) applications.
    Part I, Infrastructure, has two chapters: Chapter 2 on crawling the Web and Chapter 3 an Web search and information retrieval. The second part of the book, containing chapters 4, 5, and 6, is the centerpiece. This part specifically focuses an machine learning in the context of hypertext. Part III is a collection of applications that utilize the techniques described in earlier chapters. Chapter 7 is an social network analysis. Chapter 8 is an resource discovery. Chapter 9 is an the future of Web mining. Overall, this is a valuable reference book for researchers and developers in the field of Web mining. It should be particularly useful for those who would like to design and probably code their own Computer programs out of the equations and pseudocodes an most of the pages. For a student, the most valuable feature of the book is perhaps the formal and consistent treatments of concepts across the board. For what is behind and beyond the technical details, one has to either dig deeper into the bibliographic notes at the end of each chapter, or resort to more in-depth analysis of relevant subjects in the literature. lf you are looking for successful stories about Web mining or hard-way-learned lessons of failures, this is not the book."
  8. Semantic keyword-based search on structured data sources : First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers (2016) 0.10
    0.09532292 = product of:
      0.14298438 = sum of:
        0.043640595 = weight(_text_:book in 2753) [ClassicSimilarity], result of:
          0.043640595 = score(doc=2753,freq=2.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.19507864 = fieldWeight in 2753, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=2753)
        0.09934378 = sum of:
          0.060501352 = weight(_text_:search in 2753) [ClassicSimilarity], result of:
            0.060501352 = score(doc=2753,freq=10.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.34347048 = fieldWeight in 2753, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.03125 = fieldNorm(doc=2753)
          0.03884242 = weight(_text_:22 in 2753) [ClassicSimilarity], result of:
            0.03884242 = score(doc=2753,freq=4.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.21886435 = fieldWeight in 2753, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2753)
      0.6666667 = coord(2/3)
    
    Abstract
    This book constitutes the thoroughly refereed post-conference proceedings of the First COST Action IC1302 International KEYSTONE Conference on semantic Keyword-based Search on Structured Data Sources, IKC 2015, held in Coimbra, Portugal, in September 2015. The 13 revised full papers, 3 revised short papers, and 2 invited papers were carefully reviewed and selected from 22 initial submissions. The paper topics cover techniques for keyword search, semantic data management, social Web and social media, information retrieval, benchmarking for search on big data.
    Content
    Inhalt: Professional Collaborative Information Seeking: On Traceability and Creative Sensemaking / Nürnberger, Andreas (et al.) - Recommending Web Pages Using Item-Based Collaborative Filtering Approaches / Cadegnani, Sara (et al.) - Processing Keyword Queries Under Access Limitations / Calì, Andrea (et al.) - Balanced Large Scale Knowledge Matching Using LSH Forest / Cochez, Michael (et al.) - Improving css-KNN Classification Performance by Shifts in Training Data / Draszawka, Karol (et al.) - Classification Using Various Machine Learning Methods and Combinations of Key-Phrases and Visual Features / HaCohen-Kerner, Yaakov (et al.) - Mining Workflow Repositories for Improving Fragments Reuse / Harmassi, Mariem (et al.) - AgileDBLP: A Search-Based Mobile Application for Structured Digital Libraries / Ifrim, Claudia (et al.) - Support of Part-Whole Relations in Query Answering / Kozikowski, Piotr (et al.) - Key-Phrases as Means to Estimate Birth and Death Years of Jewish Text Authors / Mughaz, Dror (et al.) - Visualization of Uncertainty in Tag Clouds / Platis, Nikos (et al.) - Multimodal Image Retrieval Based on Keywords and Low-Level Image Features / Pobar, Miran (et al.) - Toward Optimized Multimodal Concept Indexing / Rekabsaz, Navid (et al.) - Semantic URL Analytics to Support Efficient Annotation of Large Scale Web Archives / Souza, Tarcisio (et al.) - Indexing of Textual Databases Based on Lexical Resources: A Case Study for Serbian / Stankovic, Ranka (et al.) - Domain-Specific Modeling: Towards a Food and Drink Gazetteer / Tagarev, Andrey (et al.) - Analysing Entity Context in Multilingual Wikipedia to Support Entity-Centric Retrieval Applications / Zhou, Yiwei (et al.)
    Date
    1. 2.2016 18:25:22
  9. Bedford, D.: Knowledge architectures : structures and semantics (2021) 0.09
    0.09421193 = product of:
      0.14131789 = sum of:
        0.075587735 = weight(_text_:book in 566) [ClassicSimilarity], result of:
          0.075587735 = score(doc=566,freq=6.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.33788615 = fieldWeight in 566, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=566)
        0.065730155 = sum of:
          0.038264416 = weight(_text_:search in 566) [ClassicSimilarity], result of:
            0.038264416 = score(doc=566,freq=4.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.21722981 = fieldWeight in 566, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.03125 = fieldNorm(doc=566)
          0.027465738 = weight(_text_:22 in 566) [ClassicSimilarity], result of:
            0.027465738 = score(doc=566,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.15476047 = fieldWeight in 566, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=566)
      0.6666667 = coord(2/3)
    
    Abstract
    Knowledge Architectures reviews traditional approaches to managing information and explains why they need to adapt to support 21st-century information management and discovery. Exploring the rapidly changing environment in which information is being managed and accessed, the book considers how to use knowledge architectures, the basic structures and designs that underlie all of the parts of an effective information system, to best advantage. Drawing on 40 years of work with a variety of organizations, Bedford explains that failure to understand the structure behind any given system can be the difference between an effective solution and a significant and costly failure. Demonstrating that the information user environment has shifted significantly in the past 20 years, the book explains that end users now expect designs and behaviors that are much closer to the way they think, work, and act. Acknowledging how important it is that those responsible for developing an information or knowledge management system understand knowledge structures, the book goes beyond a traditional library science perspective and uses case studies to help translate the abstract and theoretical to the practical and concrete. Explaining the structures in a simple and intuitive way and providing examples that clearly illustrate the challenges faced by a range of different organizations, Knowledge Architectures is essential reading for those studying and working in library and information science, data science, systems development, database design, and search system architecture and engineering.
    Content
    Section 1 Context and purpose of knowledge architecture -- 1 Making the case for knowledge architecture -- 2 The landscape of knowledge assets -- 3 Knowledge architecture and design -- 4 Knowledge architecture reference model -- 5 Knowledge architecture segments -- Section 2 Designing for availability -- 6 Knowledge object modeling -- 7 Knowledge structures for encoding, formatting, and packaging -- 8 Functional architecture for identification and distinction -- 9 Functional architectures for knowledge asset disposition and destruction -- 10 Functional architecture designs for knowledge preservation and conservation -- Section 3 Designing for accessibility -- 11 Functional architectures for knowledge seeking and discovery -- 12 Functional architecture for knowledge search -- 13 Functional architecture for knowledge categorization -- 14 Functional architectures for indexing and keywording -- 15 Functional architecture for knowledge semantics -- 16 Functional architecture for knowledge abstraction and surrogation -- Section 4 Functional architectures to support knowledge consumption -- 17 Functional architecture for knowledge augmentation, derivation, and synthesis -- 18 Functional architecture to manage risk and harm -- 19 Functional architectures for knowledge authentication and provenance -- 20 Functional architectures for securing knowledge assets -- 21 Functional architectures for authorization and asset management -- Section 5 Pulling it all together - the big picture knowledge architecture -- 22 Functional architecture for knowledge metadata and metainformation -- 23 The whole knowledge architecture - pulling it all together
  10. Olsen, K.A.: ¬The Internet, the Web, and eBusiness : formalizing applications for the real world (2005) 0.09
    0.08993193 = product of:
      0.13489789 = sum of:
        0.09758334 = weight(_text_:book in 149) [ClassicSimilarity], result of:
          0.09758334 = score(doc=149,freq=40.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.4362091 = fieldWeight in 149, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.015625 = fieldNorm(doc=149)
        0.03731454 = sum of:
          0.013528514 = weight(_text_:search in 149) [ClassicSimilarity], result of:
            0.013528514 = score(doc=149,freq=2.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.076802336 = fieldWeight in 149, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.015625 = fieldNorm(doc=149)
          0.023786027 = weight(_text_:22 in 149) [ClassicSimilarity], result of:
            0.023786027 = score(doc=149,freq=6.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.1340265 = fieldWeight in 149, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=149)
      0.6666667 = coord(2/3)
    
    Classification
    004.678 22
    DDC
    004.678 22
    Footnote
    Rez. in: JASIST 57(2006) no.14, S.1979-1980 (J.G. Williams): "The Introduction and Part I of this book presents the world of computing with a historical and philosophical overview of computers, computer applications, networks, the World Wide Web, and eBusiness based on the notion that the real world places constraints on the application of these technologies and without a formalized approach, the benefits of these technologies cannot be realized. The concepts of real world constraints and the need for formalization are used as the cornerstones for a building-block approach for helping the reader understand computing, networking, the World Wide Web, and the applications that use these technologies as well as all the possibilities that these technologies hold for the future. The author's building block approach to understanding computing, networking and application building makes the book useful for science, business, and engineering students taking an introductory computing course and for social science students who want to understand more about the social impact of computers, the Internet, and Web technology. It is useful as well for managers and designers of Web and ebusiness applications, and for the general public who are interested in understanding how these technologies may impact their lives, their jobs, and the social context in which they live and work. The book does assume some experience and terminology in using PCs and the Internet but is not intended for computer science students, although they could benefit from the philosophical basis and the diverse viewpoints presented. The author uses numerous analogies from domains outside the area of computing to illustrate concepts and points of view that make the content understandable as well as interesting to individuals without any in-depth knowledge of computing, networking, software engineering, system design, ebusiness, and Web design. These analogies include interesting real-world events ranging from the beginning of railroads, to Henry Ford's mass produced automobile, to the European Space Agency's loss of the 7 billion dollar Adriane rocket, to travel agency booking, to medical systems, to banking, to expanding democracy. The book gives the pros and cons of the possibilities offered by the Internet and the Web by presenting numerous examples and an analysis of the pros and cons of these technologies for the examples provided. The author shows, in an interesting manner, how the new economy based on the Internet and the Web affects society and business life on a worldwide basis now and how it will affect the future, and how society can take advantage of the opportunities that the Internet and the Web offer.
    The book is organized into six sections or parts with several chapters within each part. Part 1, does a good job of building an understanding some of the historical aspects of computing and why formalization is important for building computer-based applications. A distinction is made between formalized and unformalized data, processes, and procedures, which the author cleverly uses to show how the level of formalization of data, processes, and procedures determines the functionality of computer applications. Part I also discusses the types of data that can be represented in symbolic form, which is crucial to using computer and networking technology in a virtual environment. This part also discusses the technical and cultural constraints upon computing, networking, and web technologies with many interesting examples. The cultural constraints discussed range from copyright to privacy issues. Part 1 is critical to understanding the author's point of view and discussions in other sections of the book. The discussion on machine intelligence and natural language processing is particularly well done. Part 2 discusses the fundamental concepts and standards of the Internet and Web. Part 3 introduces the need for formalization to construct ebusiness applications in the business-to-consumer category (B2C). There are many good and interesting examples of these B2C applications and the associated analyses of them using the concepts introduced in Parts I and 2 of the book. Part 4 examines the formalization of business-to-business (B2B) applications and discusses the standards that are needed to transmit data with a high level of formalization. Part 5 is a rather fascinating discussion of future possibilities and Part 6 presents a concise summary and conclusion. The book covers a wide array of subjects in the computing, networking, and Web areas and although all of them are presented in an interesting style, some subjects may be more relevant and useful to individuals depending on their background or academic discipline. Part 1 is relevant to all potential readers no matter what their background or academic discipline but Part 2 is a little more technical; although most people with an information technology or computer science background will not find much new here with the exception of the chapters on "Dynamic Web Pages" and "Embedded Scripts." Other readers will find this section informative and useful for understanding other parts of the book. Part 3 does not offer individuals with a background in computing, networking, or information science much in addition to what they should already know, but the chapters on "Searching" and "Web Presence" may be useful because they present some interesting notions about using the Web. Part 3 gives an overview of B2C applications and is where the author provides examples of the difference between services that are completely symbolic and services that have both a symbolic portion and a physical portion. Part 4 of the book discusses B2B technology once again with many good examples. The chapter on "XML" in Part 4 is not appropriate for readers without a technical background. Part 5 is a teacher's dream because it offers a number of situations that can be used for classroom discussions or case studies independent of background or academic discipline.
    Each chapter provides suggestions for exercises and discussions, which makes the book useful as a textbook. The suggestions in the exercise and discussion section at the end of each chapter are simply delightful to read and provide a basis for some lively discussion and fun exercises by students. These exercises appear to be well thought out and are intended to highlight the content of the chapter. The notes at the end of chapters provide valuable data that help the reader to understand a topic or a reference to an entity that the reader may not know. Chapter 1 on "formalism," chapter 2 on "symbolic data," chapter 3 on "constraints on technology," and chapter 4 on "cultural constraints" are extremely well presented and every reader needs to read these chapters because they lay the foundation for most of the chapters that follow. The analogies, examples, and points of view presented make for some really interesting reading and lively debate and discussion. These chapters comprise Part 1 of the book and not only provide a foundation for the rest of the book but could be used alone as the basis of a social science course on computing, networking, and the Web. Chapters 5 and 6 on Internet protocols and the development of Web protocols may be more detailed and filled with more acronyms than the average person wants to deal with but content is presented with analogies and examples that make it easier to digest. Chapter 7 will capture most readers attention because it discusses how e-mail works and many of the issues with e-mail, which a majority of people in developed countries have dealt with. Chapter 8 is also one that most people will be interested in reading because it shows how Internet browsers work and the many issues such as security associated with these software entities. Chapter 9 discusses the what, why, and how of the World Wide Web, which is a lead-in to chapter 10 on "Searching the Web" and chapter 11 on "Organizing the Web-Portals," which are two chapters that even technically oriented people should read since it provides information that most people outside of information and library science are not likely to know.
    Chapter 12 on "Web Presence" is a useful discussion of what it means to have a Web site that is indexed by a spider from a major Web search engine. Chapter 13 on "Mobile Computing" is very well done and gives the reader a solid basis of what is involved with mobile computing without overwhelming them with technical details. Chapter 14 discusses the difference between pull technologies and push technologies using the Web that is understandable to almost anyone who has ever used the Web. Chapters 15, 16, and 17 are for the technically stout at heart; they cover "Dynamic Web Pages," " Embedded Scripts," and "Peer-to-Peer Computing." These three chapters will tend to dampen the spirits of anyone who does not come from a technical background. Chapter 18 on "Symbolic Services-Information Providers" and chapter 19 on "OnLine Symbolic Services-Case Studies" are ideal for class discussion and students assignments as is chapter 20, "Online Retail Shopping-Physical Items." Chapter 21 presents a number of case studies on the "Technical Constraints" discussed in chapter 3 and chapter 22 presents case studies on the "Cultural Constraints" discussed in chapter 4. These case studies are not only presented in an interesting manner they focus on situations that most Web users have encountered but never really given much thought to. Chapter 24 "A Better Model?" discusses a combined "formalized/unformalized" model that might make Web applications such as banking and booking travel work better than the current models. This chapter will cause readers to think about the role of formalization and the unformalized processes that are involved in any application. Chapters 24, 25, 26, and 27 which discuss the role of "Data Exchange," "Formalized Data Exchange," "Electronic Data Interchange-EDI," and "XML" in business-to-business applications on the Web may stress the limits of the nontechnically oriented reader even though it is presented in a very understandable manner. Chapters 28, 29, 30, and 31 discuss Web services, the automated value chain, electronic market places, and outsourcing, which are of high interest to business students, businessmen, and designers of Web applications and can be skimmed by others who want to understand ebusiness but are not interested in the details. In Part 5, the chapters 32, 33, and 34 on "Interfacing with the Web of the Future," "A Disruptive Technology," "Virtual Businesses," and "Semantic Web," were, for me, who teaches courses in IT and develops ebusiness applications the most interesting chapters in the book because they provided some useful insights about what is likely to happen in the future. The summary in part 6 of the book is quite well done and I wish I had read it before I started reading the other parts of the book.
    The book is quite large with over 400 pages and covers a myriad of topics, which is probably more than any one course could cover but an instructor could pick and choose those chapters most appropriate to the course content. The book could be used for multiple courses by selecting the relevant topics. I enjoyed the first person, rather down to earth, writing style and the number of examples and analogies that the author presented. I believe most people could relate to the examples and situations presented by the author. As a teacher in Information Technology, the discussion questions at the end of the chapters and the case studies are a valuable resource as are the end of chapter notes. I highly recommend this book for an introductory course that combines computing, networking, the Web, and ebusiness for Business and Social Science students as well as an introductory course for students in Information Science, Library Science, and Computer Science. Likewise, I believe IT managers and Web page designers could benefit from selected chapters in the book."
  11. Stacey, Alison; Stacey, Adrian: Effective information retrieval from the Internet : an advanced user's guide (2004) 0.09
    0.08930281 = product of:
      0.13395421 = sum of:
        0.10689719 = weight(_text_:book in 4497) [ClassicSimilarity], result of:
          0.10689719 = score(doc=4497,freq=12.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.47784314 = fieldWeight in 4497, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=4497)
        0.027057027 = product of:
          0.054114055 = sum of:
            0.054114055 = weight(_text_:search in 4497) [ClassicSimilarity], result of:
              0.054114055 = score(doc=4497,freq=8.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.30720934 = fieldWeight in 4497, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4497)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book provides practical strategies which enable the advanced web user to locate information effectively and to form a precise evaluation of the accuracy of that information. Although the book provides a brief but thorough review of the technologies which are currently available for these purposes, most of the book concerns practical `future-proof' techniques which are independent of changes in the tools available. For example, the book covers: how to retrieve salient information quickly; how to remove or compensate for bias; and tuition of novice Internet users.
    Content
    Key Features - Importantly, the book enables readers to develop strategies which will continue to be useful despite the rapidly-evolving state of the Internet and Internet technologies - it is not about technological `tricks'. - Enables readers to be aware of and compensate for bias and errors which are ubiquitous an the Internet. - Provides contemporary information an the deficiencies in web skills of novice users as well as practical techniques for teaching such users. The Authors Dr Alison Stacey works at the Learning Resource Centre, Cambridge Regional College. Dr Adrian Stacey, formerly based at Cambridge University, is a software programmer. Readership The book is aimed at a wide range of librarians and other information professionals who need to retrieve information from the Internet efficiently, to evaluate their confidence in the information they retrieve and/or to train others to use the Internet. It is primarily aimed at intermediate to advanced users of the Internet. Contents Fundamentals of information retrieval from the Internet - why learn web searching technique; types of information requests; patterns for information retrieval; leveraging the technology: Search term choice: pinpointing information an the web - why choose queries carefully; making search terms work together; how to pick search terms; finding the 'unfindable': Blas an the Internet - importance of bias; sources of bias; usergenerated bias: selecting information with which you already agree; assessing and compensating for bias; case studies: Query reformulation and longer term strategies - how to interact with your search engine; foraging for information; long term information retrieval: using the Internet to find trends; automating searches: how to make your machine do your work: Assessing the quality of results- how to assess and ensure quality: The novice user and teaching internet skills - novice users and their problems with the web; case study: research in a college library; interpreting 'second hand' web information.
  12. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.09
    0.08867782 = product of:
      0.13301674 = sum of:
        0.10910148 = weight(_text_:book in 2801) [ClassicSimilarity], result of:
          0.10910148 = score(doc=2801,freq=8.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.4876966 = fieldWeight in 2801, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
        0.023915261 = product of:
          0.047830522 = sum of:
            0.047830522 = weight(_text_:search in 2801) [ClassicSimilarity], result of:
              0.047830522 = score(doc=2801,freq=4.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.27153727 = fieldWeight in 2801, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2801)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
  13. Smiraglia, R.P.: ¬The elements of knowledge organization (2014) 0.09
    0.08599379 = product of:
      0.12899068 = sum of:
        0.11546217 = weight(_text_:book in 1513) [ClassicSimilarity], result of:
          0.11546217 = score(doc=1513,freq=14.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.5161296 = fieldWeight in 1513, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=1513)
        0.013528514 = product of:
          0.027057027 = sum of:
            0.027057027 = weight(_text_:search in 1513) [ClassicSimilarity], result of:
              0.027057027 = score(doc=1513,freq=2.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.15360467 = fieldWeight in 1513, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1513)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The Elements of Knowledge Organization is a unique and original work introducing the fundamental concepts related to the field of Knowledge Organization (KO). There is no other book like it currently available. The author begins the book with a comprehensive discussion of "knowledge" and its associated theories. He then presents a thorough discussion of the philosophical underpinnings of knowledge organization. The author walks the reader through the Knowledge Organization domain expanding the core topics of ontologies, taxonomies, classification, metadata, thesauri and domain analysis. The author also presents the compelling challenges associated with the organization of knowledge. This is the first book focused on the concepts and theories associated with KO domain. Prior to this book, individuals wishing to study Knowledge Organization in its broadest sense would generally collocate their own resources, navigating the various methods and models and perhaps inadvertently excluding relevant materials. This text cohesively links key and related KO material and provides a deeper understanding of the domain in its broadest sense and with enough detail to truly investigate its many facets. This book will be useful to both graduate and undergraduate students in the computer science and information science domains both as a text and as a reference book. It will also be valuable to researchers and practitioners in the industry who are working on website development, database administration, data mining, data warehousing and data for search engines. The book is also beneficial to anyone interested in the concepts and theories associated with the organization of knowledge. Dr. Richard P. Smiraglia is a world-renowned author who is well published in the Knowledge Organization domain. Dr. Smiraglia is editor-in-chief of the journal Knowledge Organization, published by Ergon-Verlag of Würzburg. He is a professor and member of the Information Organization Research Group at the School of Information Studies at University of Wisconsin Milwaukee.
  14. Dominich, S.: Mathematical foundations of information retrieval (2001) 0.08
    0.08417838 = product of:
      0.12626757 = sum of:
        0.10910148 = weight(_text_:book in 1753) [ClassicSimilarity], result of:
          0.10910148 = score(doc=1753,freq=8.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.4876966 = fieldWeight in 1753, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1753)
        0.017166087 = product of:
          0.034332175 = sum of:
            0.034332175 = weight(_text_:22 in 1753) [ClassicSimilarity], result of:
              0.034332175 = score(doc=1753,freq=2.0), product of:
                0.17747258 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679956 = queryNorm
                0.19345059 = fieldWeight in 1753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1753)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book offers a comprehensive and consistent mathematical approach to information retrieval (IR) without which no implementation is possible, and sheds an entirely new light upon the structure of IR models. It contains the descriptions of all IR models in a unified formal style and language, along with examples for each, thus offering a comprehensive overview of them. The book also creates mathematical foundations and a consistent mathematical theory (including all mathematical results achieved so far) of IR as a stand-alone mathematical discipline, which thus can be read and taught independently. Also, the book contains all necessary mathematical knowledge on which IR relies, to help the reader avoid searching different sources. The book will be of interest to computer or information scientists, librarians, mathematicians, undergraduate students and researchers whose work involves information retrieval.
    Date
    22. 3.2008 12:26:32
  15. Kumbhar, R.: Library classification trends in the 21st century (2012) 0.08
    0.08417838 = product of:
      0.12626757 = sum of:
        0.10910148 = weight(_text_:book in 736) [ClassicSimilarity], result of:
          0.10910148 = score(doc=736,freq=8.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.4876966 = fieldWeight in 736, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0390625 = fieldNorm(doc=736)
        0.017166087 = product of:
          0.034332175 = sum of:
            0.034332175 = weight(_text_:22 in 736) [ClassicSimilarity], result of:
              0.034332175 = score(doc=736,freq=2.0), product of:
                0.17747258 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679956 = queryNorm
                0.19345059 = fieldWeight in 736, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=736)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This book would serve as a good introductory textbook for a library science student or as a reference work on the types of classification currently in use. College and Research Libraries - covers all aspects of library classification - it is the only book that reviews literature published over a decade's time span (1999-2009) - well thought chapterization which is in tune with the LIS and classification curriculum - useful reference tool for researchers in classification - a valuable contribution to the bibliographic control of classification literature Library Classification Trends in the 21st Century traces development in and around library classification as reported in literature published in the first decade of the 21st century. It reviews literature published on various aspects of library classification, including modern applications of classification such as internet resource discovery, automatic book classification, text categorization, modern manifestations of classification such as taxonomies, folksonomies and ontologies and interoperable systems enabling crosswalk. The book also features classification education and an exploration of relevant topics.
    Date
    22. 2.2013 12:23:55
  16. Cole, C.: ¬The consciousness' drive : information need and the search for meaning (2018) 0.08
    0.08412719 = product of:
      0.12619078 = sum of:
        0.10350277 = weight(_text_:book in 480) [ClassicSimilarity], result of:
          0.10350277 = score(doc=480,freq=20.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.46266967 = fieldWeight in 480, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.0234375 = fieldNorm(doc=480)
        0.022688007 = product of:
          0.045376014 = sum of:
            0.045376014 = weight(_text_:search in 480) [ClassicSimilarity], result of:
              0.045376014 = score(doc=480,freq=10.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.25760287 = fieldWeight in 480, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=480)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    What is the uniquely human factor in finding and using information to produce new knowledge? Is there an underlying aspect of our thinking that cannot be imitated by the AI-equipped machines that will increasingly dominate our lives? This book answers these questions, and tells us about our consciousness - its drive or intention in seeking information in the world around us, and how we are able to construct new knowledge from this information. The book is divided into three parts, each with an introduction and a conclusion that relate the theories and models presented to the real-world experience of someone using a search engine. First, Part I defines the exceptionality of human consciousness and its need for new information and how, uniquely among all other species, we frame our interactions with the world. Part II then investigates the problem of finding our real information need during information searches, and how our exceptional ability to frame our interactions with the world blocks us from finding the information we really need. Lastly, Part III details the solution to this framing problem and its operational implications for search engine design for everyone whose objective is the production of new knowledge. In this book, Charles Cole deliberately writes in a conversational style for a broader readership, keeping references to research material to the bare minimum. Replicating the structure of a detective novel, he builds his arguments towards a climax at the end of the book. For our video-game, video-on-demand times, he has visualized the ideas that form the book's thesis in over 90 original diagrams. And above all, he establishes a link between information need and knowledge production in evolutionary psychology, and thus bases his arguments in our origins as a species: how we humans naturally think, and how we naturally search for new information because our consciousness drives us to need it.
    Footnote
    Rez. in: JASIST 71(2020) no.1, S.118-120 (Heidi Julien). - Vgl. auch den Beitrag: Cole, C.: A rebuttal of the book review of the book titled "The Consciousness' Drive: Information Need and the Search for Meaning": mapping cognitive and document spaces. In: Journal of the Association for Information Science and Technology. 71(2020) no.2, S.242.
    Weitere Rez. unter: https://crl.acrl.org/index.php/crl/article/view/17830/19659: "Author Charles Cole's understanding of human consciousness is built foundationally upon the work of evolutionary psychologist Merlin Donald, who visualized the development of human cognition in four phases, with three transitions. According to Donald's Theory of Mind, preceding types of cognition do not cease to exist after human cognition transitions to a new phase, but exist as four layers within the modern consciousness. Cole's narrative in the first part of the book recounts Donald's model of human cognition, categorizing episodic, mimetic, mythic, and theoretic phases of cognition. The second half of the book sets up a particular situation of consciousness using the frame theory of Marvin Minsky, uses Meno's paradox (how can we come to know that which we don't already know?) in a critique of framing as Minsky conceived it, and presents group and national level framing and shows their inherent danger in allowing information avoidance and sanctioning immoral actions. Cole concludes with a solution of information need being sparked or triggered that takes the human consciousness out of a closed information loop, driving the consciousness to seek new information.
    Cole's reliance upon Donald's Theory of Mind is limiting; it represents a major weakness of the book. Donald's Theory of Mind has been an influential model in evolutionary psychology, appearing in his 1991 book Origins of the Modern Mind: Three Stages in the Evolution of Culture and Cognition (Harvard University Press). Donald's approach is a top-down, conceptual model that explicates what makes the human mind different and exceptional from other animal intelligences. However, there are other alternative, useful, science-based models of animal and human cognition that begin with a bottom-up approach to understanding the building blocks of cognition shared in common by humans and other "intelligent" animals. For example, in "A Bottom-Up Approach to the Primate Mind," Frans B.M. de Waal and Pier Francesco Ferrari note that neurophysiological studies show that specific neuron assemblies in the rat hippocampus are active during memory retrieval and that those same assemblies predict future choices. This would suggest that episodic memory and future orientation aren't as advanced a process as Donald posits in his Theory of Mind. Also, neuroimaging studies in humans show that the cortical areas active during observations of another's actions are related in position and structure to those areas identified as containing mirror neurons in macaques. Could this point to a physiological basis for imitation? ... (Scott Curtis)"
  17. Belew, R.K.: Finding out about : a cognitive perspective on search engine technology and the WWW (2001) 0.08
    0.08369707 = product of:
      0.1255456 = sum of:
        0.08728119 = weight(_text_:book in 3346) [ClassicSimilarity], result of:
          0.08728119 = score(doc=3346,freq=8.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.39015728 = fieldWeight in 3346, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=3346)
        0.038264416 = product of:
          0.07652883 = sum of:
            0.07652883 = weight(_text_:search in 3346) [ClassicSimilarity], result of:
              0.07652883 = score(doc=3346,freq=16.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.43445963 = fieldWeight in 3346, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3346)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The World Wide Web is rapidly filling with more text than anyone could have imagined even a short time ago, but the task of isolating relevant parts of this vast information has become just that much more daunting. Richard Belew brings a cognitive perspective to the study of information retrieval as a discipline within computer science. He introduces the idea of Finding Out About (FDA) as the process of actively seeking out information relevant to a topic of interest and describes its many facets - ranging from creating a good characterization of what the user seeks, to what documents actually mean, to methods of inferring semantic clues about each document, to the problem of evaluating whether our search engines are performing as we have intended. Finding Out About explains how to build the tools that are useful for searching collections of text and other media. In the process it takes a close look at the properties of textual documents that do not become clear until very large collections of them are brought together and shows that the construction of effective search engines requires knowledge of the statistical and mathematical properties of linguistic phenomena, as well as an appreciation for the cognitive foundation we bring to the task as language users. The unique approach of this book is its even handling of the phenomena of both numbers and words, making it accessible to a wide audience. The textbook is usable in both undergraduate and graduate classes on information retrieval, library science, and computational linguistics. The text is accompanied by a CD-ROM that contains a hypertext version of the book, including additional topics and notes not present in the printed edition. In addition, the CD contains the full text of C.J. "Keith" van Rijsbergen's famous textbook, Information Retrieval (now out of print). Many active links from Belew's to van Rijsbergen's hypertexts help to unite the material. Several test corpora and indexing tools are provided, to support the design of your own search engine. Additional exercises using these corpora and code are available to instructors. Also supporting this book is a Web site that will include recent additions to the book, as well as links to sites of new topics and methods.
    LCSH
    Search engines / Programming
    Web search engines
    Subject
    Search engines / Programming
    Web search engines
  18. Vise, D.A.; Malseed, M.: ¬The Google story (2005) 0.08
    0.082435444 = product of:
      0.12365316 = sum of:
        0.06613927 = weight(_text_:book in 5937) [ClassicSimilarity], result of:
          0.06613927 = score(doc=5937,freq=6.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.2956504 = fieldWeight in 5937, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5937)
        0.057513885 = sum of:
          0.033481363 = weight(_text_:search in 5937) [ClassicSimilarity], result of:
            0.033481363 = score(doc=5937,freq=4.0), product of:
              0.17614716 = queryWeight, product of:
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.050679956 = queryNorm
              0.19007608 = fieldWeight in 5937, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.475677 = idf(docFreq=3718, maxDocs=44218)
                0.02734375 = fieldNorm(doc=5937)
          0.02403252 = weight(_text_:22 in 5937) [ClassicSimilarity], result of:
            0.02403252 = score(doc=5937,freq=2.0), product of:
              0.17747258 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050679956 = queryNorm
              0.1354154 = fieldWeight in 5937, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=5937)
      0.6666667 = coord(2/3)
    
    Abstract
    Social phenomena happen, and the historians follow. So it goes with Google, the latest star shooting through the universe of trend-setting businesses. This company has even entered our popular lexicon: as many note, "Google" has moved beyond noun to verb, becoming an action which most tech-savvy citizens at the turn of the twenty-first century recognize and in fact do, on a daily basis. It's this wide societal impact that fascinated authors David Vise and Mark Malseed, who came to the book with well-established reputations in investigative reporting. Vise authored the bestselling The Bureau and the Mole, and Malseed contributed significantly to two Bob Woodward books, Bush at War and Plan of Attack. The kind of voluminous research and behind-the-scenes insight in which both writers specialize, and on which their earlier books rested, comes through in The Google Story. The strength of the book comes from its command of many small details, and its focus on the human side of the Google story, as opposed to the merely academic one. Some may prefer a dryer, more analytic approach to Google's impact on the Internet, like The Search or books that tilt more heavily towards bits and bytes on the spectrum between technology and business, like The Singularity is Near. Those wanting to understand the motivations and personal growth of founders Larry Page and Sergey Brin and CEO Eric Schmidt, however, will enjoy this book. Vise and Malseed interviewed over 150 people, including numerous Google employees, Wall Street analysts, Stanford professors, venture capitalists, even Larry Page's Cub Scout leader, and their comprehensiveness shows. As the narrative unfolds, readers learn how Google grew out of the intellectually fertile and not particularly directed friendship between Page and Brin; how the founders attempted to peddle early versions of their search technology to different Silicon Valley firms for $1 million; how Larry and Sergey celebrated their first investor's check with breakfast at Burger King; how the pair initially housed their company in a Palo Alto office, then eventually moved to a futuristic campus dubbed the "Googleplex"; how the company found its financial footing through keyword-targeted Web ads; how various products like Google News, Froogle, and others were cooked up by an inventive staff; how Brin and Page proved their mettle as tough businessmen through negotiations with AOL Europe and their controversial IPO process, among other instances; and how the company's vision for itself continues to grow, such as geographic expansion to China and cooperation with Craig Venter on the Human Genome Project. Like the company it profiles, The Google Story is a bit of a wild ride, and fun, too. Its first appendix lists 23 "tips" which readers can use to get more utility out of Google. The second contains the intelligence test which Google Research offers to prospective job applicants, and shows the sometimes zany methods of this most unusual business. Through it all, Vise and Malseed synthesize a variety of fascinating anecdotes and speculation about Google, and readers seeking a first draft of the history of the company will enjoy an easy read.
    Date
    3. 5.1997 8:44:22
  19. Kaushik, S.K.: DDC 22 : a practical approach (2004) 0.08
    0.08240997 = product of:
      0.12361495 = sum of:
        0.08728119 = weight(_text_:book in 1842) [ClassicSimilarity], result of:
          0.08728119 = score(doc=1842,freq=8.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.39015728 = fieldWeight in 1842, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.03125 = fieldNorm(doc=1842)
        0.03633376 = product of:
          0.07266752 = sum of:
            0.07266752 = weight(_text_:22 in 1842) [ClassicSimilarity], result of:
              0.07266752 = score(doc=1842,freq=14.0), product of:
                0.17747258 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050679956 = queryNorm
                0.4094577 = fieldWeight in 1842, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1842)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A system of library classification that flashed across the inquiring mind of young Melvil Louis Kossuth Dewey (known as Melvil Dewey) in 1873 is still the most popular classification scheme.. The modern library classification begins with Dewey Decimal Classification (DDC). Melvil Dewey devised DDC in 1876. DDC has is credit of 128 years of boudless success. The DDC is being taught as a practical subject throughout the world and it is being used in majority of libraries in about 150 countries. This is the result of continuous revision that 22nd Edition of DDC has been published in July 2003. No other classification scheme has published so many editions. Some welcome changes have been made in DDC 22. To reduce the Christian bias in 200 religion, the numbers 201 to 209 have been devoted to specific aspects of religion. In the previous editions these numbers were devoted to Christianity. to enhance the classifier's efficiency, Table 7 has been removed from DDC 22 and the provision of adding group of persons is made by direct use of notation already available in schedules and in notation -08 from Table 1 Standard Subdivision. The present book is an attempt to explain, with suitable examples, the salient provisions of DDC 22. The book is written in simple language so that the students may not face any difficulty in understanding what is being explained. The examples in the book are explained in a step-by-step procedure. It is hoped that this book will prove of great help and use to the library professionals in general and library and information science students in particular.
    Content
    1. Introduction to DDC 22 2. Major changes in DDC 22 3. Introduction to the schedules 4. Use of Table 1 : Standard Subdivisions 5. Use of Table 2 : Areas 6. Use of Table 3 : Subdivisions for the arts, for individual literatures, for specific literary forms 7. Use to Table 4 : Subdivisions of individual languages and language families 8. Use of Table 5 : Ethic and National groups 9. Use of Table 6 : Languages 10. Treatment of Groups of Persons
    Object
    DDC-22
  20. Frants, V.I.; Voiskunskii, V.G.; Shapiro, J.: Automated information retrieval : theory and methods (1997) 0.08
    0.080849335 = product of:
      0.121274 = sum of:
        0.09257569 = weight(_text_:book in 1790) [ClassicSimilarity], result of:
          0.09257569 = score(doc=1790,freq=4.0), product of:
            0.2237077 = queryWeight, product of:
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.050679956 = queryNorm
            0.41382432 = fieldWeight in 1790, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.414126 = idf(docFreq=1454, maxDocs=44218)
              0.046875 = fieldNorm(doc=1790)
        0.02869831 = product of:
          0.05739662 = sum of:
            0.05739662 = weight(_text_:search in 1790) [ClassicSimilarity], result of:
              0.05739662 = score(doc=1790,freq=4.0), product of:
                0.17614716 = queryWeight, product of:
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.050679956 = queryNorm
                0.3258447 = fieldWeight in 1790, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.475677 = idf(docFreq=3718, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1790)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The emergence of information retrieval systems as a means of satisfying information needs has resulted in a large number of theoretical and practical ideas being introduced. These advancements provide the foundation for the theory of IR systems detailed in this book. Attention is also focused on the other areas of information science and how these differing theories interact and rely on each other. The book details algorithms in each process in the system, including those that are radically new in the retrieval process and those that are adaptable to the individual. New apporaches to evaluating information retrieval studying their performance are included
    Content
    The system and the systems approach - Vital activities and needs - Information crisis - Concept on an information retrieval system - Information retrieval language - Automatic indexing of documents - Automatic indexing of search requests - Storage and access to information - Control and feedback in IR systems - Evaluation of search results - Evaluation of macroevaluated objects - Some directions in the development of IR systems

Languages

  • e 712
  • d 228
  • m 6
  • de 1
  • f 1
  • i 1
  • kr 1
  • pl 1
  • More… Less…

Types

  • s 193
  • i 26
  • b 7
  • el 7
  • n 2
  • d 1
  • u 1
  • More… Less…

Themes

Subjects

Classifications