Search (35 results, page 1 of 2)

  • × theme_ss:"Informetrie"
  • × author_ss:"Thelwall, M."
  1. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.02
    0.017033914 = product of:
      0.03406783 = sum of:
        0.021117793 = weight(_text_:data in 57) [ClassicSimilarity], result of:
          0.021117793 = score(doc=57,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 57, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=57)
        0.012950035 = product of:
          0.02590007 = sum of:
            0.02590007 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.02590007 = score(doc=57,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Webometric network analyses have been used to map the connectivity of groups of websites to identify clusters, important sites or overall structure. Such analyses have mainly been based upon hyperlink counts, the number of hyperlinks between a pair of websites, although some have used title mentions or URL citations instead. The ability to automatically gather hyperlink counts from Yahoo! ceased in April 2011 and the ability to manually gather such counts was due to cease by early 2012, creating a need for alternatives. This article assesses URL citations and title mentions as possible replacements for hyperlinks in both binary and weighted direct link and co-inlink network diagrams. It also assesses three different types of data for the network connections: hit count estimates, counts of matching URLs, and filtered counts of matching URLs. Results from analyses of U.S. library and information science departments and U.K. universities give evidence that metrics based upon URLs or titles can be appropriate replacements for metrics based upon hyperlinks for both binary and weighted networks, although filtered counts of matching URLs are necessary to give the best results for co-title mention and co-URL citation network diagrams.
    Date
    6. 4.2012 18:16:22
  2. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.01
    0.014932535 = product of:
      0.05973014 = sum of:
        0.05973014 = weight(_text_:data in 4279) [ClassicSimilarity], result of:
          0.05973014 = score(doc=4279,freq=16.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.49407038 = fieldWeight in 4279, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  3. Harries, G.; Wilkinson, D.; Price, L.; Fairclough, R.; Thelwall, M.: Hyperlinks as a data source for science mapping : making sense of it all (2005) 0.01
    0.012670675 = product of:
      0.0506827 = sum of:
        0.0506827 = weight(_text_:data in 4654) [ClassicSimilarity], result of:
          0.0506827 = score(doc=4654,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.4192326 = fieldWeight in 4654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.09375 = fieldNorm(doc=4654)
      0.25 = coord(1/4)
    
  4. Thelwall, M.; Li, X.; Barjak, F.; Robinson, S.: Assessing the international web connectivity of research groups (2008) 0.01
    0.009144273 = product of:
      0.03657709 = sum of:
        0.03657709 = weight(_text_:data in 1401) [ClassicSimilarity], result of:
          0.03657709 = score(doc=1401,freq=6.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.30255508 = fieldWeight in 1401, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1401)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this paper is to claim that it is useful to assess the web connectivity of research groups, describe hyperlink-based techniques to achieve this and present brief details of European life sciences research groups as a case study. Design/methodology/approach - A commercial search engine was harnessed to deliver hyperlink data via its automatic query submission interface. A special purpose link analysis tool, LexiURL, then summarised and graphed the link data in appropriate ways. Findings - Webometrics can provide a wide range of descriptive information about the international connectivity of research groups. Research limitations/implications - Only one field was analysed, data was taken from only one search engine, and the results were not validated. Practical implications - Web connectivity seems to be particularly important for attracting overseas job applicants and to promote research achievements and capabilities, and hence we contend that it can be useful for national and international governments to use webometrics to ensure that the web is being used effectively by research groups. Originality/value - This is the first paper to make a case for the value of using a range of webometric techniques to evaluate the web presences of research groups within a field, and possibly the first "applied" webometrics study produced for an external contract.
  5. Mohammadi , E.; Thelwall, M.: Mendeley readership altmetrics for the social sciences and humanities : research evaluation and knowledge flows (2014) 0.01
    0.009144273 = product of:
      0.03657709 = sum of:
        0.03657709 = weight(_text_:data in 2190) [ClassicSimilarity], result of:
          0.03657709 = score(doc=2190,freq=6.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.30255508 = fieldWeight in 2190, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2190)
      0.25 = coord(1/4)
    
    Abstract
    Although there is evidence that counting the readers of an article in the social reference site, Mendeley, may help to capture its research impact, the extent to which this is true for different scientific fields is unknown. In this study, we compare Mendeley readership counts with citations for different social sciences and humanities disciplines. The overall correlation between Mendeley readership counts and citations for the social sciences was higher than for the humanities. Low and medium correlations between Mendeley bookmarks and citation counts in all the investigated disciplines suggest that these measures reflect different aspects of research impact. Mendeley data were also used to discover patterns of information flow between scientific fields. Comparing information flows based on Mendeley bookmarking data and cross-disciplinary citation analysis for the disciplines revealed substantial similarities and some differences. Thus, the evidence from this study suggests that Mendeley readership data could be used to help capture knowledge transfer across scientific disciplines, especially for people that read but do not author articles, as well as giving impact evidence at an earlier stage than is possible with citation counts.
  6. Vaughan, L.; Thelwall, M.: Scholarly use of the Web : what are the key inducers of links to journal Web sites? (2003) 0.01
    0.0074662673 = product of:
      0.02986507 = sum of:
        0.02986507 = weight(_text_:data in 1236) [ClassicSimilarity], result of:
          0.02986507 = score(doc=1236,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 1236, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1236)
      0.25 = coord(1/4)
    
    Abstract
    Web links have been studied by information scientists for at least six years but it is only in the past two that clear evidence has emerged to show that counts of links to scholarly Web spaces (universities and departments) can correlate significantly with research measures, giving some credence to their use for the investigation of scholarly communication. This paper reports an a study to investigate the factors that influence the creation of links to journal Web sites. An empirical approach is used: collecting data and testing for significant patterns. The specific questions addressed are whether site age and site content are inducers of links to a journal's Web site as measured by the ratio of link counts to Journal Impact Factors, two variables previously discovered to be related. A new methodology for data collection is also introduced that uses the Internet Archive to obtain an earliest known creation date for Web sites. The results show that both site age and site content are significant factors for the disciplines studied: library and information science, and law. Comparisons between the two fields also show disciplinary differences in Web site characteristics. Scholars and publishers should be particularly aware that richer content an a journal's Web site tends to generate links and thus the traffic to the site.
  7. Kousha, K.; Thelwall, M.: Google book search : citation analysis for social science and the humanities (2009) 0.01
    0.0074662673 = product of:
      0.02986507 = sum of:
        0.02986507 = weight(_text_:data in 2946) [ClassicSimilarity], result of:
          0.02986507 = score(doc=2946,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 2946, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2946)
      0.25 = coord(1/4)
    
    Abstract
    In both the social sciences and the humanities, books and monographs play significant roles in research communication. The absence of citations from most books and monographs from the Thomson Reuters/Institute for Scientific Information databases (ISI) has been criticized, but attempts to include citations from or to books in the research evaluation of the social sciences and humanities have not led to widespread adoption. This article assesses whether Google Book Search (GBS) can partially fill this gap by comparing citations from books with citations from journal articles to journal articles in 10 science, social science, and humanities disciplines. Book citations were 31% to 212% of ISI citations and, hence, numerous enough to supplement ISI citations in the social sciences and humanities covered, but not in the sciences (3%-5%), except for computing (46%), due to numerous published conference proceedings. A case study was also made of all 1,923 articles in the 51 information science and library science ISI-indexed journals published in 2003. Within this set, highly book-cited articles tended to receive many ISI citations, indicating a significant relationship between the two types of citation data, but with important exceptions that point to the additional information provided by book citations. In summary, GBS is clearly a valuable new source of citation data for the social sciences and humanities. One practical implication is that book-oriented scholars should consult it for additional citations to their work when applying for promotion and tenure.
  8. Haustein, S.; Peters, I.; Sugimoto, C.R.; Thelwall, M.; Larivière, V.: Tweeting biomedicine : an analysis of tweets and citations in the biomedical literature (2014) 0.01
    0.0074662673 = product of:
      0.02986507 = sum of:
        0.02986507 = weight(_text_:data in 1229) [ClassicSimilarity], result of:
          0.02986507 = score(doc=1229,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 1229, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1229)
      0.25 = coord(1/4)
    
    Abstract
    Data collected by social media platforms have been introduced as new sources for indicators to help measure the impact of scholarly research in ways that are complementary to traditional citation analysis. Data generated from social media activities can be used to reflect broad types of impact. This article aims to provide systematic evidence about how often Twitter is used to disseminate information about journal articles in the biomedical sciences. The analysis is based on 1.4 million documents covered by both PubMed and Web of Science and published between 2010 and 2012. The number of tweets containing links to these documents was analyzed and compared to citations to evaluate the degree to which certain journals, disciplines, and specialties were represented on Twitter and how far tweets correlate with citation impact. With less than 10% of PubMed articles mentioned on Twitter, its uptake is low in general but differs between journals and specialties. Correlations between tweets and citations are low, implying that impact metrics based on tweets are different from those based on citations. A framework using the coverage of articles and the correlation between Twitter mentions and citations is proposed to facilitate the evaluation of novel social-media-based metrics.
  9. Mohammadi, E.; Thelwall, M.; Haustein, S.; Larivière, V.: Who reads research articles? : an altmetrics analysis of Mendeley user categories (2015) 0.01
    0.0074662673 = product of:
      0.02986507 = sum of:
        0.02986507 = weight(_text_:data in 2162) [ClassicSimilarity], result of:
          0.02986507 = score(doc=2162,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 2162, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2162)
      0.25 = coord(1/4)
    
    Abstract
    Little detailed information is known about who reads research articles and the contexts in which research articles are read. Using data about people who register in Mendeley as readers of articles, this article explores different types of users of Clinical Medicine, Engineering and Technology, Social Science, Physics, and Chemistry articles inside and outside academia. The majority of readers for all disciplines were PhD students, postgraduates, and postdocs but other types of academics were also represented. In addition, many Clinical Medicine articles were read by medical professionals. The highest correlations between citations and Mendeley readership counts were found for types of users who often authored academic articles, except for associate professors in some sub-disciplines. This suggests that Mendeley readership can reflect usage similar to traditional citation impact if the data are restricted to readers who are also authors without the delay of impact measured by citation counts. At the same time, Mendeley statistics can also reveal the hidden impact of some research articles, such as educational value for nonauthor users inside academia or the impact of research articles on practice for readers outside academia.
  10. Payne, N.; Thelwall, M.: Mathematical models for academic webs : linear relationship or non-linear power law? (2005) 0.01
    0.0073912274 = product of:
      0.02956491 = sum of:
        0.02956491 = weight(_text_:data in 1066) [ClassicSimilarity], result of:
          0.02956491 = score(doc=1066,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24455236 = fieldWeight in 1066, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1066)
      0.25 = coord(1/4)
    
    Abstract
    Previous studies of academic web interlinking have tended to hypothesise that the relationship between the research of a university and links to or from its web site should follow a linear trend, yet the typical distribution of web data, in general, seems to be a non-linear power law. This paper assesses whether a linear trend or a power law is the most appropriate method with which to model the relationship between research and web site size or outlinks. Following linear regression, analysis of the confidence intervals for the logarithmic graphs, and analysis of the outliers, the results suggest that a linear trend is more appropriate than a non-linear power law.
  11. Thelwall, M.: Webometrics (2009) 0.01
    0.0063353376 = product of:
      0.02534135 = sum of:
        0.02534135 = weight(_text_:data in 3906) [ClassicSimilarity], result of:
          0.02534135 = score(doc=3906,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 3906, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3906)
      0.25 = coord(1/4)
    
    Abstract
    Webometrics is an information science field concerned with measuring aspects of the World Wide Web (WWW) for a variety of information science research goals. It came into existence about five years after the Web was formed and has since grown to become a significant aspect of information science, at least in terms of published research. Although some webometrics research has focused on the structure or evolution of the Web itself or the performance of commercial search engines, most has used data from the Web to shed light on information provision or online communication in various contexts. Most prominently, techniques have been developed to track, map, and assess Web-based informal scholarly communication, for example, in terms of the hyperlinks between academic Web sites or the online impact of digital repositories. In addition, a range of nonacademic issues and groups of Web users have also been analyzed.
  12. Didegah, F.; Thelwall, M.: Determinants of research citation impact in nanoscience and nanotechnology (2013) 0.01
    0.0063353376 = product of:
      0.02534135 = sum of:
        0.02534135 = weight(_text_:data in 737) [ClassicSimilarity], result of:
          0.02534135 = score(doc=737,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=737)
      0.25 = coord(1/4)
    
    Abstract
    This study investigates a range of metrics available when a nanoscience and nanotechnology article is published to see which metrics correlate more with the number of citations to the article. It also introduces the degree of internationality of journals and references as new metrics for this purpose. The journal impact factor; the impact of references; the internationality of authors, journals, and references; and the number of authors, institutions, and references were all calculated for papers published in nanoscience and nanotechnology journals in the Web of Science from 2007 to 2009. Using a zero-inflated negative binomial regression model on the data set, the impact factor of the publishing journal and the citation impact of the cited references were found to be the most effective determinants of citation counts in all four time periods. In the entire 2007 to 2009 period, apart from journal internationality and author numbers and internationality, all other predictor variables had significant effects on citation counts.
  13. Shema, H.; Bar-Ilan, J.; Thelwall, M.: Do blog citations correlate with a higher number of future citations? : Research blogs as a potential source for alternative metrics (2014) 0.01
    0.0063353376 = product of:
      0.02534135 = sum of:
        0.02534135 = weight(_text_:data in 1258) [ClassicSimilarity], result of:
          0.02534135 = score(doc=1258,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 1258, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1258)
      0.25 = coord(1/4)
    
    Abstract
    Journal-based citations are an important source of data for impact indices. However, the impact of journal articles extends beyond formal scholarly discourse. Measuring online scholarly impact calls for new indices, complementary to the older ones. This article examines a possible alternative metric source, blog posts aggregated at ResearchBlogging.org, which discuss peer-reviewed articles and provide full bibliographic references. Articles reviewed in these blogs therefore receive "blog citations." We hypothesized that articles receiving blog citations close to their publication time receive more journal citations later than the articles in the same journal published in the same year that did not receive such blog citations. Statistically significant evidence for articles published in 2009 and 2010 support this hypothesis for seven of 12 journals (58%) in 2009 and 13 of 19 journals (68%) in 2010. We suggest, based on these results, that blog citations can be used as an alternative metric source.
  14. Maflahi, N.; Thelwall, M.: When are readership counts as useful as citation counts? : Scopus versus Mendeley for LIS journals (2016) 0.01
    0.0063353376 = product of:
      0.02534135 = sum of:
        0.02534135 = weight(_text_:data in 2495) [ClassicSimilarity], result of:
          0.02534135 = score(doc=2495,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 2495, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
      0.25 = coord(1/4)
    
    Abstract
    In theory, articles can attract readers on the social reference sharing site Mendeley before they can attract citations, so Mendeley altmetrics could provide early indications of article impact. This article investigates the influence of time on the number of Mendeley readers of an article through a theoretical discussion and an investigation into the relationship between counts of readers of, and citations to, 4 general library and information science (LIS) journals. For this discipline, it takes about 7 years for articles to attract as many Scopus citations as Mendeley readers, and after this the Spearman correlation between readers and citers is stable at about 0.6 for all years. This suggests that Mendeley readership counts may be useful impact indicators for both newer and older articles. The lack of dates for individual Mendeley article readers and an unknown bias toward more recent articles mean that readership data should be normalized individually by year, however, before making any comparisons between articles published in different years.
  15. Thelwall, M.: Extracting macroscopic information from Web links (2001) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 6851) [ClassicSimilarity], result of:
          0.021117793 = score(doc=6851,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 6851, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6851)
      0.25 = coord(1/4)
    
    Abstract
    Much has been written about the potential and pitfalls of macroscopic Web-based link analysis, yet there have been no studies that have provided clear statistical evidence that any of the proposed calculations can produce results over large areas of the Web that correlate with phenomena external to the Internet. This article attempts to provide such evidence through an evaluation of Ingwersen's (1998) proposed external Web Impact Factor (WIF) for the original use of the Web: the interlinking of academic research. In particular, it studies the case of the relationship between academic hyperlinks and research activity for universities in Britain, a country chosen for its variety of institutions and the existence of an official government rating exercise for research. After reviewing the numerous reasons why link counts may be unreliable, it demonstrates that four different WIFs do, in fact, correlate with the conventional academic research measures. The WIF delivering the greatest correlation with research rankings was the ratio of Web pages with links pointing at research-based pages to faculty numbers. The scarcity of links to electronic academic papers in the data set suggests that, in contrast to citation analysis, this WIF is measuring the reputations of universities and their scholars, rather than the quality of their publications
  16. Thelwall, M.: Conceptualizing documentation on the Web : an evaluation of different heuristic-based models for counting links between university Web sites (2002) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 978) [ClassicSimilarity], result of:
          0.021117793 = score(doc=978,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=978)
      0.25 = coord(1/4)
    
    Abstract
    All known previous Web link studies have used the Web page as the primary indivisible source document for counting purposes. Arguments are presented to explain why this is not necessarily optimal and why other alternatives have the potential to produce better results. This is despite the fact that individual Web files are often the only choice if search engines are used for raw data and are the easiest basic Web unit to identify. The central issue is of defining the Web "document": that which should comprise the single indissoluble unit of coherent material. Three alternative heuristics are defined for the educational arena based upon the directory, the domain and the whole university site. These are then compared by implementing them an a set of 108 UK university institutional Web sites under the assumption that a more effective heuristic will tend to produce results that correlate more highly with institutional research productivity. It was discovered that the domain and directory models were able to successfully reduce the impact of anomalous linking behavior between pairs of Web sites, with the latter being the method of choice. Reasons are then given as to why a document model an its own cannot eliminate all anomalies in Web linking behavior. Finally, the results from all models give a clear confirmation of the very strong association between the research productivity of a UK university and the number of incoming links from its peers' Web sites.
  17. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 337) [ClassicSimilarity], result of:
          0.021117793 = score(doc=337,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=337)
      0.25 = coord(1/4)
    
    Abstract
    We use a new data gathering method, "Web/URL citation," Web/URL and Google Scholar to compare traditional and Web-based citation patterns across multiple disciplines (biology, chemistry, physics, computing, sociology, economics, psychology, and education) based upon a sample of 1,650 articles from 108 open access (OA) journals published in 2001. A Web/URL citation of an online journal article is a Web mention of its title, URL, or both. For each discipline, except psychology, we found significant correlations between Thomson Scientific (formerly Thomson ISI, here: ISI) citations and both Google Scholar and Google Web/URL citations. Google Scholar citations correlated more highly with ISI citations than did Google Web/URL citations, indicating that the Web/URL method measures a broader type of citation phenomenon. Google Scholar citations were more numerous than ISI citations in computer science and the four social science disciplines, suggesting that Google Scholar is more comprehensive for social sciences and perhaps also when conference articles are valued and published online. We also found large disciplinary differences in the percentage overlap between ISI and Google Scholar citation sources. Finally, although we found many significant trends, there were also numerous exceptions, suggesting that replacing traditional citation sources with the Web or Google Scholar for research impact calculations would be problematic.
  18. Thelwall, M.: Quantitative comparisons of search engine results (2008) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 2350) [ClassicSimilarity], result of:
          0.021117793 = score(doc=2350,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 2350, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2350)
      0.25 = coord(1/4)
    
    Abstract
    Search engines are normally used to find information or Web sites, but Webometric investigations use them for quantitative data such as the number of pages matching a query and the international spread of those pages. For this type of application, the accuracy of the hit count estimates and range of URLs in the full results are important. Here, we compare the applications programming interfaces of Google, Yahoo!, and Live Search for 1,587 single word searches. The hit count estimates were broadly consistent but with Yahoo! and Google, reporting 5-6 times more hits than Live Search. Yahoo! tended to return slightly more matching URLs than Google, with Live Search returning significantly fewer. Yahoo!'s result URLs included a significantly wider range of domains and sites than the other two, and there was little consistency between the three engines in the number of different domains. In contrast, the three engines were reasonably consistent in the number of different top-level domains represented in the result URLs, although Yahoo! tended to return the most. In conclusion, quantitative results from the three search engines are mostly consistent but with unexpected types of inconsistency that users should be aware of. Google is recommended for hit count estimates but Yahoo! is recommended for all other Webometric purposes.
  19. Thelwall, M.: ¬A comparison of link and URL citation counting (2011) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 4533) [ClassicSimilarity], result of:
          0.021117793 = score(doc=4533,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 4533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4533)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - Link analysis is an established topic within webometrics. It normally uses counts of links between sets of web sites or to sets of web sites. These link counts are derived from web crawlers or commercial search engines with the latter being the only alternative for some investigations. This paper compares link counts with URL citation counts in order to assess whether the latter could be a replacement for the former if the major search engines withdraw their advanced hyperlink search facilities. Design/methodology/approach - URL citation counts are compared with link counts for a variety of data sets used in previous webometric studies. Findings - The results show a high degree of correlation between the two but with URL citations being much less numerous, at least outside academia and business. Research limitations/implications - The results cover a small selection of 15 case studies and so the findings are only indicative. Significant differences between results indicate that the difference between link counts and URL citation counts will vary between webometric studies. Practical implications - Should link searches be withdrawn, then link analyses of less well linked non-academic, non-commercial sites would be seriously weakened, although citations based on e-mail addresses could help to make citations more numerous than links for some business and academic contexts. Originality/value - This is the first systematic study of the difference between link counts and URL citation counts in a variety of contexts and it shows that there are significant differences between the two.
  20. Thelwall, M.; Sud, P.: ¬A comparison of methods for collecting web citation data for academic organizations (2011) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 4626) [ClassicSimilarity], result of:
          0.021117793 = score(doc=4626,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 4626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4626)
      0.25 = coord(1/4)