Search (22 results, page 1 of 2)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Shiri, A.A.; Revie, C.: Query expansion behavior within a thesaurus-enhanced search environment : a user-centered evaluation (2006) 0.02
    0.021407552 = product of:
      0.042815104 = sum of:
        0.02986507 = weight(_text_:data in 56) [ClassicSimilarity], result of:
          0.02986507 = score(doc=56,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 56, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
        0.012950035 = product of:
          0.02590007 = sum of:
            0.02590007 = weight(_text_:22 in 56) [ClassicSimilarity], result of:
              0.02590007 = score(doc=56,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.19345059 = fieldWeight in 56, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=56)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The study reported here investigated the query expansion behavior of end-users interacting with a thesaurus-enhanced search system on the Web. Two groups, namely academic staff and postgraduate students, were recruited into this study. Data were collected from 90 searches performed by 30 users using the OVID interface to the CAB abstracts database. Data-gathering techniques included questionnaires, screen capturing software, and interviews. The results presented here relate to issues of search-topic and search-term characteristics, number and types of expanded queries, usefulness of thesaurus terms, and behavioral differences between academic staff and postgraduate students in their interaction. The key conclusions drawn were that (a) academic staff chose more narrow and synonymous terms than did postgraduate students, who generally selected broader and related terms; (b) topic complexity affected users' interaction with the thesaurus in that complex topics required more query expansion and search term selection; (c) users' prior topic-search experience appeared to have a significant effect on their selection and evaluation of thesaurus terms; (d) in 50% of the searches where additional terms were suggested from the thesaurus, users stated that they had not been aware of the terms at the beginning of the search; this observation was particularly noticeable in the case of postgraduate students.
    Date
    22. 7.2006 16:32:43
  2. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.02
    0.020440696 = product of:
      0.04088139 = sum of:
        0.02534135 = weight(_text_:data in 2419) [ClassicSimilarity], result of:
          0.02534135 = score(doc=2419,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 2419, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.015540041 = product of:
          0.031080082 = sum of:
            0.031080082 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
              0.031080082 = score(doc=2419,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.23214069 = fieldWeight in 2419, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2419)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The digital library system Daffodil is targeted at strategic support of users during the information search process. For searching, exploring and managing digital library objects it provides user-customisable information seeking patterns over a federation of heterogeneous digital libraries. In this paper evaluation results with respect to retrieval effectiveness, efficiency and user satisfaction are presented. The analysis focuses on strategic support for the scientific work-flow. Daffodil supports the whole work-flow, from data source selection over information seeking to the representation, organisation and reuse of information. By embedding high level search functionality into the scientific work-flow, the user experiences better strategic system support due to a more systematic work process. These ideas have been implemented in Daffodil followed by a qualitative evaluation. The evaluation has been conducted with 28 participants, ranging from information seeking novices to experts. The results are promising, as they support the chosen model.
    Date
    16.11.2008 16:22:48
  3. Bradford, R.B.: Relationship discovery in large text collections using Latent Semantic Indexing (2006) 0.01
    0.013627131 = product of:
      0.027254261 = sum of:
        0.016894234 = weight(_text_:data in 1163) [ClassicSimilarity], result of:
          0.016894234 = score(doc=1163,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.1397442 = fieldWeight in 1163, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=1163)
        0.010360028 = product of:
          0.020720055 = sum of:
            0.020720055 = weight(_text_:22 in 1163) [ClassicSimilarity], result of:
              0.020720055 = score(doc=1163,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.15476047 = fieldWeight in 1163, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1163)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism, and Security, SIAM Data Mining Conference, Bethesda, MD, 20-22 April, 2006. [http://www.siam.org/meetings/sdm06/workproceed/Link%20Analysis/15.pdf]
  4. Niemi, T.; Jämsen , J.: ¬A query language for discovering semantic associations, part I : approach and formal definition of query primitives (2007) 0.01
    0.011805206 = product of:
      0.047220822 = sum of:
        0.047220822 = weight(_text_:data in 591) [ClassicSimilarity], result of:
          0.047220822 = score(doc=591,freq=10.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.39059696 = fieldWeight in 591, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=591)
      0.25 = coord(1/4)
    
    Abstract
    In contemporary query languages, the user is responsible for navigation among semantically related data. Because of the huge amount of data and the complex structural relationships among data in modern applications, it is unrealistic to suppose that the user could know completely the content and structure of the available information. There are several query languages whose purpose is to facilitate navigation in unknown structures of databases. However, the background assumption of these languages is that the user knows how data are related to each other semantically in the structure at hand. So far only little attention has been paid to how unknown semantic associations among available data can be discovered. We address this problem in this article. A semantic association between two entities can be constructed if a sequence of relationships expressed explicitly in a database can be found that connects these entities to each other. This sequence may contain several other entities through which the original entities are connected to each other indirectly. We introduce an expressive and declarative query language for discovering semantic associations. Our query language is able, for example, to discover semantic associations between entities for which only some of the characteristics are known. Further, it integrates the manipulation of semantic associations with the manipulation of documents that may contain information on entities in semantic associations.
  5. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.01
    0.009157057 = product of:
      0.036628228 = sum of:
        0.036628228 = product of:
          0.073256455 = sum of:
            0.073256455 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.073256455 = score(doc=1352,freq=4.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
  6. Wolfram, D.; Xie, H.I.: Traditional IR for web users : a context for general audience digital libraries (2002) 0.01
    0.009144273 = product of:
      0.03657709 = sum of:
        0.03657709 = weight(_text_:data in 2589) [ClassicSimilarity], result of:
          0.03657709 = score(doc=2589,freq=6.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.30255508 = fieldWeight in 2589, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2589)
      0.25 = coord(1/4)
    
    Abstract
    The emergence of general audience digital libraries (GADLs) defines a context that represents a hybrid of both "traditional" IR, using primarily bibliographic resources provided by database vendors, and "popular" IR, exemplified by public search systems available on the World Wide Web. Findings of a study investigating end-user searching and response to a GADL are reported. Data collected from a Web-based end-user survey and data logs of resource usage for a Web-based GADL were analyzed for user characteristics, patterns of access and use, and user feedback. Cross-tabulations using respondent demographics revealed several key differences in how the system was used and valued by users of different age groups. Older users valued the service more than younger users and engaged in different searching and viewing behaviors. The GADL more closely resembles traditional retrieval systems in terms of content and purpose of use, but is more similar to popular IR systems in terms of user behavior and accessibility. A model that defines the dual context of the GADL environment is derived from the data analysis and existing IR models in general and other specific contexts. The authors demonstrate the distinguishing characteristics of this IR context, and discuss implications for the development and evaluation of future GADLs to accommodate a variety of user needs and expectations.
  7. Quiroga, L.M.; Mostafa, J.: ¬An experiment in building profiles in information filtering : the role of context of user relevance feedback (2002) 0.01
    0.0074662673 = product of:
      0.02986507 = sum of:
        0.02986507 = weight(_text_:data in 2579) [ClassicSimilarity], result of:
          0.02986507 = score(doc=2579,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 2579, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2579)
      0.25 = coord(1/4)
    
    Abstract
    An experiment was conducted to see how relevance feedback could be used to build and adjust profiles to improve the performance of filtering systems. Data was collected during the system interaction of 18 graduate students with SIFTER (Smart Information Filtering Technology for Electronic Resources), a filtering system that ranks incoming information based on users' profiles. The data set came from a collection of 6000 records concerning consumer health. In the first phase of the study, three different modes of profile acquisition were compared. The explicit mode allowed users to directly specify the profile; the implicit mode utilized relevance feedback to create and refine the profile; and the combined mode allowed users to initialize the profile and to continuously refine it using relevance feedback. Filtering performance, measured in terms of Normalized Precision, showed that the three approaches were significantly different ( [small alpha, Greek] =0.05 and p =0.012). The explicit mode of profile acquisition consistently produced superior results. Exclusive reliance on relevance feedback in the implicit mode resulted in inferior performance. The low performance obtained by the implicit acquisition mode motivated the second phase of the study, which aimed to clarify the role of context in relevance feedback judgments. An inductive content analysis of thinking aloud protocols showed dimensions that were highly situational, establishing the importance context plays in feedback relevance assessments. Results suggest the need for better representation of documents, profiles, and relevance feedback mechanisms that incorporate dimensions identified in this research.
  8. Gao, J.; Zhang, J.: Clustered SVD strategies in latent semantic indexing (2005) 0.01
    0.0073912274 = product of:
      0.02956491 = sum of:
        0.02956491 = weight(_text_:data in 1166) [ClassicSimilarity], result of:
          0.02956491 = score(doc=1166,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24455236 = fieldWeight in 1166, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1166)
      0.25 = coord(1/4)
    
    Abstract
    The text retrieval method using latent semantic indexing (LSI) technique with truncated singular value decomposition (SVD) has been intensively studied in recent years. The SVD reduces the noise contained in the original representation of the term-document matrix and improves the information retrieval accuracy. Recent studies indicate that SVD is mostly useful for small homogeneous data collections. For large inhomogeneous datasets, the performance of the SVD based text retrieval technique may deteriorate. We propose to partition a large inhomogeneous dataset into several smaller ones with clustered structure, on which we apply the truncated SVD. Our experimental results show that the clustered SVD strategies may enhance the retrieval accuracy and reduce the computing and storage costs.
  9. Sacco, G.M.: Dynamic taxonomies and guided searches (2006) 0.01
    0.0064099403 = product of:
      0.025639761 = sum of:
        0.025639761 = product of:
          0.051279522 = sum of:
            0.051279522 = weight(_text_:22 in 5295) [ClassicSimilarity], result of:
              0.051279522 = score(doc=5295,freq=4.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.38301262 = fieldWeight in 5295, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5295)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 7.2006 17:56:22
  10. Sanderson, M.; Lawrie, D.: Building, testing, and applying concept hierarchies (2000) 0.01
    0.0063353376 = product of:
      0.02534135 = sum of:
        0.02534135 = weight(_text_:data in 37) [ClassicSimilarity], result of:
          0.02534135 = score(doc=37,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 37, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=37)
      0.25 = coord(1/4)
    
    Abstract
    A means of automatically deriving a hierarchical organization of concepts from a set of documents without use of training data or standard clustering techniques is presented. Using a process that extracts salient words and phrases from the documents, these terms are organized hierarchically using a type of co-occurrence known as subsumption. The resulting structure is displayed as a series of hierarchical menus. When generated from a set of retrieved documents, a user browsing the menus gains an overview of their content in a manner distinct from existing techniques. The methods used to build the structure are simple and appear to be effective. The formation and presentation of the hierarchy is described along with a study of some of its properties, including a preliminary experiment, which indicates that users may find the hierarchy a more efficient means of locating relevant documents than the classic method of scanning a ranked document list
  11. Lin, J.; DiCuccio, M.; Grigoryan, V.; Wilbur, W.J.: Navigating information spaces : a case study of related article search in PubMed (2008) 0.01
    0.0063353376 = product of:
      0.02534135 = sum of:
        0.02534135 = weight(_text_:data in 2124) [ClassicSimilarity], result of:
          0.02534135 = score(doc=2124,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.2096163 = fieldWeight in 2124, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2124)
      0.25 = coord(1/4)
    
    Abstract
    The concept of an "information space" provides a powerful metaphor for guiding the design of interactive retrieval systems. We present a case study of related article search, a browsing tool designed to help users navigate the information space defined by results of the PubMed® search engine. This feature leverages content-similarity links that tie MEDLINE® citations together in a vast document network. We examine the effectiveness of related article search from two perspectives: a topological analysis of networks generated from information needs represented in the TREC 2005 genomics track and a query log analysis of real PubMed users. Together, data suggest that related article search is a useful feature and that browsing related articles has become an integral part of how users interact with PubMed.
  12. Efthimiadis, E.N.: Interactive query expansion : a user-based evaluation in a relevance feedback environment (2000) 0.01
    0.0059730136 = product of:
      0.023892054 = sum of:
        0.023892054 = weight(_text_:data in 5701) [ClassicSimilarity], result of:
          0.023892054 = score(doc=5701,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.19762816 = fieldWeight in 5701, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=5701)
      0.25 = coord(1/4)
    
    Abstract
    A user-centered investigation of interactive query expansion within the context of a relevance feedback system is presented in this article. Data were collected from 25 searches using the INSPEC database. The data collection mechanisms included questionnaires, transaction logs, and relevance evaluations. The results discuss issues that relate to query expansion, retrieval effectiveness, the correspondence of the on-line-to-off-line relevance judgments, and the selection of terms for query expansion by users (interactive query expansion). The main conclusions drawn from the results of the study are that: (1) one-third of the terms presented to users in a list of candidate terms for query expansion was identified by the users as potentially useful for query expansion. (2) These terms were mainly judged as either variant expressions (synonyms) or alternative (related) terms to the initial query terms. However, a substantial portion of the selected terms were identified as representing new ideas. (3) The relationships identified between the five best terms selected by the users for query expansion and the initial query terms were that: (a) 34% of the query expansion terms have no relationship or other type of correspondence with a query term; (b) 66% of the remaining query expansion terms have a relationship to the query terms. These relationships were: narrower term (46%), broader term (3%), related term (17%). (4) The results provide evidence for the effectiveness of interactive query expansion. The initial search produced on average three highly relevant documents; the query expansion search produced on average nine further highly relevant documents. The conclusions highlight the need for more research on: interactive query expansion, the comparative evaluation of automatic vs. interactive query expansion, the study of weighted Webbased or Web-accessible retrieval systems in operational environments, and for user studies in searching ranked retrieval systems in general
  13. Kruschwitz, U.; AI-Bakour, H.: Users want more sophisticated search assistants : results of a task-based evaluation (2005) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 4575) [ClassicSimilarity], result of:
          0.021117793 = score(doc=4575,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 4575, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4575)
      0.25 = coord(1/4)
    
    Abstract
    The Web provides a massive knowledge source, as do intranets and other electronic document collections. However, much of that knowledge is encoded implicitly and cannot be applied directly without processing into some more appropriate structures. Searching, browsing, question answering, for example, could all benefit from domain-specific knowledge contained in the documents, and in applications such as simple search we do not actually need very "deep" knowledge structures such as ontologies, but we can get a long way with a model of the domain that consists of term hierarchies. We combine domain knowledge automatically acquired by exploiting the documents' markup structure with knowledge extracted an the fly to assist a user with ad hoc search requests. Such a search system can suggest query modification options derived from the actual data and thus guide a user through the space of documents. This article gives a detailed account of a task-based evaluation that compares a search system that uses the outlined domain knowledge with a standard search system. We found that users do use the query modification suggestions proposed by the system. The main conclusion we can draw from this evaluation, however, is that users prefer a system that can suggest query modifications over a standard search engine, which simply presents a ranked list of documents. Most interestingly, we observe this user preference despite the fact that the baseline system even performs slightly better under certain criteria.
  14. Kelly, D.: Measuring online information seeking context : Part 1: background and method (2006) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 206) [ClassicSimilarity], result of:
          0.021117793 = score(doc=206,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 206, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=206)
      0.25 = coord(1/4)
    
    Abstract
    Context is one of the most important concepts in information seeking and retrieval research. However, the challenges of studying context are great; thus, it is more common for researchers to use context as a post hoc explanatory factor, rather than as a concept that drives inquiry. The purposes of this study were to develop a method for collecting data about information seeking context in natural online environments, and identify which aspects of context should be considered when studying online information seeking. The study is reported in two parts. In this, the first part, the background and method are presented. Results and implications of this research are presented in Part 2 (Kelly, in press). Part 1 discusses previous literature on information seeking context and behavior and situates the current work within this literature. This part further describes the naturalistic, longitudinal research design that was used to examine and measure the online information seeking contexts of users during a 14-week period. In this design, information seeking context was characterized by a user's self-identified tasks and topics, and several attributes of these, such as the length of time the user expected to work on a task and the user's familiarity with a topic. At weekly intervals, users evaluated the usefulness of the documents that they viewed, and classified these documents according to their tasks and topics. At the end of the study, users provided feedback about the study method.
  15. Kelly, D.: Measuring online information seeking context : Part 2: Findings and discussion (2006) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 215) [ClassicSimilarity], result of:
          0.021117793 = score(doc=215,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 215, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=215)
      0.25 = coord(1/4)
    
    Abstract
    Context is one of the most important concepts in information seeking and retrieval research. However, the challenges of studying context are great; thus, it is more common for researchers to use context as a post hoc explanatory factor, rather than as a concept that drives inquiry. The purpose of this study was to develop a method for collecting data about information seeking context in natural online environments, and identify which aspects of context should be considered when studying online information seeking. The study is reported in two parts. In this, the second part, results and implications of this research are presented. Part 1 (Kelly, 2006) discussed previous literature on information seeking context and behavior, situated the current study within this literature, and described the naturalistic, longitudinal research design that was used to examine and measure the online information seeking context of seven users during a 14-week period. Results provide support for the value of the method in studying online information seeking context, the relative importance of various measures of context, how these measures change over time, and, finally, the relationship between these measures. In particular, results demonstrate significant differences in distributions of usefulness ratings according to task and topic.
  16. Koike, A.; Takagi, T.: Knowledge discovery based on an implicit and explicit conceptual network (2007) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 85) [ClassicSimilarity], result of:
          0.021117793 = score(doc=85,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 85, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=85)
      0.25 = coord(1/4)
    
    Abstract
    The amount of knowledge accumulated in published scientific papers has increased due to the continuing progress being made in scientific research. Since numerous papers have only reported fragments of scientific facts, there are possibilities for discovering new knowledge by connecting these facts. We therefore developed a system called BioTermNet to draft a conceptual network with hybrid methods of information extraction and information retrieval. Two concepts are regarded as related in this system if (a) their relationship is clearly described in MEDLINE abstracts or (b) they have distinctively co-occurred in abstracts. PRIME data, including protein interactions and functions extracted by NLP techniques, are used in the former, and the Singhalmeasure for information retrieval is used in the latter. Relationships that are not clearly or directly described in an abstract can be extracted by connecting multiple concepts. To evaluate how well this system performs, Swanson's association between Raynaud's disease and fish oil and that between migraine and magnesium were tested with abstracts that had been published before the discovery of these associations. The result was that when start and end concepts were given, plausible and understandable intermediate concepts connecting them could be detected. When only the start concept was given, not only the focused concept (magnesium and fish oil) but also other probable concepts could be detected as related concept candidates. Finally, this system was applied to find diseases related to the BRCA1 gene. Some other new potentially related diseases were detected along with diseases whose relations to BRCA1 were already known.
  17. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 2257) [ClassicSimilarity], result of:
          0.021117793 = score(doc=2257,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 2257, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2257)
      0.25 = coord(1/4)
    
    Abstract
    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the book is organised in to four main parts: Part I begins with the vital question concerning the role of information within the context of the larger theoretical debate in the literature. Part II provides a critical examination of the nature of data taxonomy from the main perspectives of culture, society, nature and the mind. Part III constructively invesitgates the world of information network from the main perspectives of culture, society, nature and the mind. Part IV proposes six main theses in the authors synthetic theory of information architecture, namely, (a) the first thesis on the simpleness-complicatedness principle, (b) the second thesis on the exactness-vagueness principle (c) the third thesis on the slowness-quickness principle (d) the fourth thesis on the order-chaos principle, (e) the fifth thesis on the symmetry-asymmetry principle, and (f) the sixth thesis on the post-human stage.
  18. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.00
    0.0045325123 = product of:
      0.01813005 = sum of:
        0.01813005 = product of:
          0.0362601 = sum of:
            0.0362601 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.0362601 = score(doc=1026,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  19. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie (2005) 0.00
    0.0045325123 = product of:
      0.01813005 = sum of:
        0.01813005 = product of:
          0.0362601 = sum of:
            0.0362601 = weight(_text_:22 in 1852) [ClassicSimilarity], result of:
              0.0362601 = score(doc=1852,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.2708308 = fieldWeight in 1852, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1852)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    11. 2.2011 18:22:58
  20. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.00
    0.0045325123 = product of:
      0.01813005 = sum of:
        0.01813005 = product of:
          0.0362601 = sum of:
            0.0362601 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.0362601 = score(doc=4324,freq=2.0), product of:
                0.13388468 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03823278 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    11. 2.2011 18:22:25