Search (40 results, page 1 of 2)

  • × author_ss:"Dahlberg, I."
  1. Dahlberg, I.: Conceptual definitions for INTERCONCEPT (1981) 0.13
    0.12905616 = product of:
      0.2581123 = sum of:
        0.2581123 = sum of:
          0.11684212 = weight(_text_:classification in 1630) [ClassicSimilarity], result of:
            0.11684212 = score(doc=1630,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.70372736 = fieldWeight in 1630, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.15625 = fieldNorm(doc=1630)
          0.1412702 = weight(_text_:22 in 1630) [ClassicSimilarity], result of:
            0.1412702 = score(doc=1630,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.77380234 = fieldWeight in 1630, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.15625 = fieldNorm(doc=1630)
      0.5 = coord(1/2)
    
    Source
    International classification. 8(1981), S.16-22
  2. Dahlberg, I.: ¬The International Classification and Indexing Bibliography (ICIB) and its classification system (1985) 0.04
    0.0404753 = product of:
      0.0809506 = sum of:
        0.0809506 = product of:
          0.1619012 = sum of:
            0.1619012 = weight(_text_:classification in 668) [ClassicSimilarity], result of:
              0.1619012 = score(doc=668,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.97511333 = fieldWeight in 668, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.125 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    International classification. 12(1985), S.143-152
  3. De Luca, E.W.; Dahlberg, I.: Including knowledge domains from the ICC into the multilingual lexical linked data cloud (2014) 0.04
    0.039578542 = product of:
      0.079157084 = sum of:
        0.079157084 = sum of:
          0.02921053 = weight(_text_:classification in 1493) [ClassicSimilarity], result of:
            0.02921053 = score(doc=1493,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.17593184 = fieldWeight in 1493, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1493)
          0.049946558 = weight(_text_:22 in 1493) [ClassicSimilarity], result of:
            0.049946558 = score(doc=1493,freq=4.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.27358043 = fieldWeight in 1493, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1493)
      0.5 = coord(1/2)
    
    Abstract
    A lot of information that is already available on the Web, or retrieved from local information systems and social networks is structured in data silos that are not semantically related. Semantic technologies make it emerge that the use of typed links that directly express their relations are an advantage for every application that can reuse the incorporated knowledge about the data. For this reason, data integration, through reengineering (e.g. triplify), or querying (e.g. D2R) is an important task in order to make information available for everyone. Thus, in order to build a semantic map of the data, we need knowledge about data items itself and the relation between heterogeneous data items. In this paper, we present our work of providing Lexical Linked Data (LLD) through a meta-model that contains all the resources and gives the possibility to retrieve and navigate them from different perspectives. We combine the existing work done on knowledge domains (based on the Information Coding Classification) within the Multilingual Lexical Linked Data Cloud (based on the RDF/OWL EurowordNet and the related integrated lexical resources (MultiWordNet, EuroWordNet, MEMODATA Lexicon, Hamburg Methaphor DB).
    Date
    22. 9.2014 19:01:18
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  4. Luca, E.W. de; Dahlberg, I.: ¬Die Multilingual Lexical Linked Data Cloud : eine mögliche Zugangsoptimierung? (2014) 0.04
    0.03871685 = product of:
      0.0774337 = sum of:
        0.0774337 = sum of:
          0.03505264 = weight(_text_:classification in 1736) [ClassicSimilarity], result of:
            0.03505264 = score(doc=1736,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.21111822 = fieldWeight in 1736, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.046875 = fieldNorm(doc=1736)
          0.04238106 = weight(_text_:22 in 1736) [ClassicSimilarity], result of:
            0.04238106 = score(doc=1736,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.23214069 = fieldWeight in 1736, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1736)
      0.5 = coord(1/2)
    
    Abstract
    Sehr viele Informationen sind bereits im Web verfügbar oder können aus isolierten strukturierten Datenspeichern wie Informationssystemen und sozialen Netzwerken gewonnen werden. Datenintegration durch Nachbearbeitung oder durch Suchmechanismen (z. B. D2R) ist deshalb wichtig, um Informationen allgemein verwendbar zu machen. Semantische Technologien ermöglichen die Verwendung definierter Verbindungen (typisierter Links), durch die ihre Beziehungen zueinander festgehalten werden, was Vorteile für jede Anwendung bietet, die das in Daten enthaltene Wissen wieder verwenden kann. Um ­eine semantische Daten-Landkarte herzustellen, benötigen wir Wissen über die einzelnen Daten und ihre Beziehung zu anderen Daten. Dieser Beitrag stellt unsere Arbeit zur Benutzung von Lexical Linked Data (LLD) durch ein Meta-Modell vor, das alle Ressourcen enthält und zudem die Möglichkeit bietet sie unter unterschiedlichen Gesichtspunkten aufzufinden. Wir verbinden damit bestehende Arbeiten über Wissensgebiete (basierend auf der Information Coding Classification) mit der Multilingual Lexical Linked Data Cloud (basierend auf der RDF/OWL-Repräsentation von EuroWordNet und den ähnlichen integrierten lexikalischen Ressourcen MultiWordNet, MEMODATA und die Hamburg Metapher DB).
    Date
    22. 9.2014 19:00:13
  5. Dahlberg, I.: Normung und Klassifikation (1978) 0.04
    0.03531755 = product of:
      0.0706351 = sum of:
        0.0706351 = product of:
          0.1412702 = sum of:
            0.1412702 = weight(_text_:22 in 1612) [ClassicSimilarity], result of:
              0.1412702 = score(doc=1612,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.77380234 = fieldWeight in 1612, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1612)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    DK-Mitteilungen. 22(1978) Nr.5/6, S.13-18
  6. Dahlberg, I.: Kolloquium Einheitsklassifikation (1975) 0.04
    0.03531755 = product of:
      0.0706351 = sum of:
        0.0706351 = product of:
          0.1412702 = sum of:
            0.1412702 = weight(_text_:22 in 1625) [ClassicSimilarity], result of:
              0.1412702 = score(doc=1625,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.77380234 = fieldWeight in 1625, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.15625 = fieldNorm(doc=1625)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Nachrichten für Dokumentation. 26(1975), S.22-25
  7. Dahlberg, I.: Principles for the construction of a universal classification system : a proposal (1978) 0.03
    0.028916951 = product of:
      0.057833903 = sum of:
        0.057833903 = product of:
          0.115667805 = sum of:
            0.115667805 = weight(_text_:classification in 67) [ClassicSimilarity], result of:
              0.115667805 = score(doc=67,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.69665456 = fieldWeight in 67, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.109375 = fieldNorm(doc=67)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Conceptual basis of the classification of knowledge. Proc. of the Ottawa Conf. ... 1.5.10.1971. Ed. by J.A. Wojciechowski
  8. Dahlberg, I.: Ingetraut Dahlberg : a brief self report (1998) 0.03
    0.025297062 = product of:
      0.050594125 = sum of:
        0.050594125 = product of:
          0.10118825 = sum of:
            0.10118825 = weight(_text_:classification in 2510) [ClassicSimilarity], result of:
              0.10118825 = score(doc=2510,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.6094458 = fieldWeight in 2510, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2510)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ingetraut Dahlberg presents a brief description of her career and involvement with cataloguing and classification schemes
    Footnote
    Articles included in an issue devoted to part 1 of a 2 part series celebrating people who have been leaders in the field of cataloguing and classification
    Source
    Cataloging and classification quarterly. 25(1998) nos.2/3, S.151-155
  9. Dahlberg, I.: On the theory of the concept (1979) 0.02
    0.024785958 = product of:
      0.049571916 = sum of:
        0.049571916 = product of:
          0.09914383 = sum of:
            0.09914383 = weight(_text_:classification in 1615) [ClassicSimilarity], result of:
              0.09914383 = score(doc=1615,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5971325 = fieldWeight in 1615, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1615)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    In deutsch auch in: International classification 1(1974) S.12-19.
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975
  10. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.02
    0.024722286 = product of:
      0.04944457 = sum of:
        0.04944457 = product of:
          0.09888914 = sum of:
            0.09888914 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.09888914 = score(doc=880,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.9-22
  11. Dahlberg, I.: Classification theory, yesterday and today (1976) 0.02
    0.023368426 = product of:
      0.04673685 = sum of:
        0.04673685 = product of:
          0.0934737 = sum of:
            0.0934737 = weight(_text_:classification in 1618) [ClassicSimilarity], result of:
              0.0934737 = score(doc=1618,freq=8.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5629819 = fieldWeight in 1618, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1618)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Until very recently, classification theory was held to be nothing but an expressed or unconscious knowledge framed in intuitively given reasons for the subdivision and arrangement of any universe. Today, after clarification of the elements of classification systems as well as the basis of concept relationshios it is possible to apply a number of principles in the evaluation of existing systems as well as in the construction of new ones and by this achieving relatively predictable and repeatable results
    Source
    International classification. 3(1976), S.85-90
  12. Dahlberg, I.: Major developments in classification (1977) 0.02
    0.023368426 = product of:
      0.04673685 = sum of:
        0.04673685 = product of:
          0.0934737 = sum of:
            0.0934737 = weight(_text_:classification in 1619) [ClassicSimilarity], result of:
              0.0934737 = score(doc=1619,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5629819 = fieldWeight in 1619, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.125 = fieldNorm(doc=1619)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  13. Dahlberg, I.: Ontical structure and universal classification (1977) 0.02
    0.023368426 = product of:
      0.04673685 = sum of:
        0.04673685 = product of:
          0.0934737 = sum of:
            0.0934737 = weight(_text_:classification in 3342) [ClassicSimilarity], result of:
              0.0934737 = score(doc=3342,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5629819 = fieldWeight in 3342, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.125 = fieldNorm(doc=3342)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  14. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.02
    0.020654965 = product of:
      0.04130993 = sum of:
        0.04130993 = product of:
          0.08261986 = sum of:
            0.08261986 = weight(_text_:classification in 4824) [ClassicSimilarity], result of:
              0.08261986 = score(doc=4824,freq=16.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.49761042 = fieldWeight in 4824, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4824)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  15. Dahlberg, I.: Concept and definition theory (1989) 0.02
    0.020447372 = product of:
      0.040894743 = sum of:
        0.040894743 = product of:
          0.081789486 = sum of:
            0.081789486 = weight(_text_:classification in 962) [ClassicSimilarity], result of:
              0.081789486 = score(doc=962,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.49260917 = fieldWeight in 962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.109375 = fieldNorm(doc=962)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Classification theory in the computer age: conversations across the disciplines. Proc. from the Conf. 18.-19.11.1988, Albany, NY
  16. Dahlberg, I.: Historical paradigms in the philosophy of classification (1994) 0.02
    0.020447372 = product of:
      0.040894743 = sum of:
        0.040894743 = product of:
          0.081789486 = sum of:
            0.081789486 = weight(_text_:classification in 8899) [ClassicSimilarity], result of:
              0.081789486 = score(doc=8899,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.49260917 = fieldWeight in 8899, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.109375 = fieldNorm(doc=8899)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  17. Dahlberg, I.: ICC - Information Coding Classification : principles, structure and application possibilities (1982) 0.02
    0.019595021 = product of:
      0.039190043 = sum of:
        0.039190043 = product of:
          0.078380086 = sum of:
            0.078380086 = weight(_text_:classification in 1238) [ClassicSimilarity], result of:
              0.078380086 = score(doc=1238,freq=10.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.4720747 = fieldWeight in 1238, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1238)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Presentation of the design, characteristics and application possibilities of a new universal classification system called ICC which is based on the premises that whenever information is to be generated or to be presented (in coded form) at least two items are necessary one of which plays the part of a subject and the other one that of the predicate of a sentence, with both these items being framed into a third one. The first basic division is by the categorial concepts denoting general entities and general aspects/determinations of being, framed into an evolutionary pattern of levels creating the 81 subject groups of ICC. Each of these subject groups is structured by a socalled systematifier, applying a recurring series of facets. The overall structure is explained and some of its application fields are outlined
    Footnote
    Das System wird angewendet in den verschiedenen Ausgaben der 'International Classification and Indexing Bibliography' und in der laufenden Bibliographie in 'International Classification'
    Source
    International classification. 9(1982), S.87-93
  18. Dahlberg, I.: ¬The basis of a new universal classification system seen from a philosophy of science point of view (1992) 0.02
    0.019595021 = product of:
      0.039190043 = sum of:
        0.039190043 = product of:
          0.078380086 = sum of:
            0.078380086 = weight(_text_:classification in 2100) [ClassicSimilarity], result of:
              0.078380086 = score(doc=2100,freq=10.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.4720747 = fieldWeight in 2100, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2100)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The implications of contributions from philosophy of science to classification theory and the construction of a new universal classification system are discussed. Starting from the purposes of universal systems and what has been considered so far to serve as main classes of the six existing major universal systems, the following theories have been treated: Theory of (1) knowledge, (2) knowledge elements and units, (3) systems, (4) the science concept, (5) knowledge fields including criteria for their identification, (6) a logical syntax, (7) an overall structure of object and aspect areas. Concludingly an evaluation was made with special regard to the representability (notation) of such a theory-based universal concept system by computer and in telecommunication. This, as well as the heuristics contained in such a theory-based system facilitate its general applicability
    Source
    Classification research for knowledge representation and organization. Proc. 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991. Ed. by N.J. Williamson u. M. Hudon
  19. Dahlberg, I.: ¬The future of classification in libraries and networks : a theoretical point of view (1995) 0.02
    0.017887725 = product of:
      0.03577545 = sum of:
        0.03577545 = product of:
          0.0715509 = sum of:
            0.0715509 = weight(_text_:classification in 5563) [ClassicSimilarity], result of:
              0.0715509 = score(doc=5563,freq=12.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.43094325 = fieldWeight in 5563, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5563)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Some time ago, some people said classification is dead, we don't need it any more. They probably thought that subject headings could do the job of the necessary subject analysis and shelving of books. However, all of a sudden in 1984 the attitude changed, when an OCLC study of Karen Markey started to show what could be done even with an "outdated system" such as the Dewey Decimal Classification in the computer, once it was visible on a screen to show the helpfulness of a classified library catalogue called an OPAC; classification was brought back into the minds of doubtful librarians and of all those who thought they would not need it any longer. But the problem once phrased: "We are stuck with the two old systems, LCC and DDC" would not find a solution and is still with us today. We know that our systems are outdated but we seem still to be unable to replace them with better ones. What then should one do and advise, knowing that we need something better? Perhaps a new universal ordering system which more adequately represents and mediates the world of our present day knowledge? If we were to develop it from scratch, how would we create it and implement it in such a way that it would be acceptable to the majority of the present intellectual world population?
    Footnote
    Paper presented at the 36th Allerton Institute, 23-25 Oct 94, Allerton Park, Monticello, IL: "New Roles for Classification in Libraries and Information Networks: Presentation and Reports"
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.23-35
  20. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.02
    0.017658776 = product of:
      0.03531755 = sum of:
        0.03531755 = product of:
          0.0706351 = sum of:
            0.0706351 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.0706351 = score(doc=127,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)