Search (25 results, page 1 of 2)

  • × theme_ss:"Begriffstheorie"
  1. Olson, H.A.: How we construct subjects : a feminist analysis (2007) 0.04
    0.03831374 = product of:
      0.07662748 = sum of:
        0.07662748 = sum of:
          0.04130993 = weight(_text_:classification in 5588) [ClassicSimilarity], result of:
            0.04130993 = score(doc=5588,freq=4.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.24880521 = fieldWeight in 5588, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5588)
          0.03531755 = weight(_text_:22 in 5588) [ClassicSimilarity], result of:
            0.03531755 = score(doc=5588,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.19345059 = fieldWeight in 5588, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5588)
      0.5 = coord(1/2)
    
    Abstract
    To organize information, librarians create structures. These structures grow from a logic that goes back at least as far as Aristotle. It is the basis of classification as we practice it, and thesauri and subject headings have developed from it. Feminist critiques of logic suggest that logic is gendered in nature. This article will explore how these critiques play out in contemporary standards for the organization of information. Our widely used classification schemes embody principles such as hierarchical force that conform to traditional/Aristotelian logic. Our subject heading strings follow a linear path of subdivision. Our thesauri break down subjects into discrete concepts. In thesauri and subject heading lists we privilege hierarchical relationships, reflected in the syndetic structure of broader and narrower terms, over all other relationships. Are our classificatory and syndetic structures gendered? Are there other options? Carol Gilligan's In a Different Voice (1982), Women's Ways of Knowing (Belenky, Clinchy, Goldberger, & Tarule, 1986), and more recent related research suggest a different type of structure for women's knowledge grounded in "connected knowing." This article explores current and potential elements of connected knowing in subject access with a focus on the relationships, both paradigmatic and syntagmatic, between concepts.
    Date
    11.12.2019 19:00:22
  2. Marradi, A.: ¬The concept of concept : concepts and terms (2012) 0.03
    0.03226404 = product of:
      0.06452808 = sum of:
        0.06452808 = sum of:
          0.02921053 = weight(_text_:classification in 33) [ClassicSimilarity], result of:
            0.02921053 = score(doc=33,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.17593184 = fieldWeight in 33, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=33)
          0.03531755 = weight(_text_:22 in 33) [ClassicSimilarity], result of:
            0.03531755 = score(doc=33,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.19345059 = fieldWeight in 33, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=33)
      0.5 = coord(1/2)
    
    Date
    22. 1.2012 13:11:25
    Series
    Forum: The philosophy of classification
  3. Dahlberg, I.: On the theory of the concept (1979) 0.02
    0.024785958 = product of:
      0.049571916 = sum of:
        0.049571916 = product of:
          0.09914383 = sum of:
            0.09914383 = weight(_text_:classification in 1615) [ClassicSimilarity], result of:
              0.09914383 = score(doc=1615,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5971325 = fieldWeight in 1615, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1615)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    In deutsch auch in: International classification 1(1974) S.12-19.
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975
  4. Svenonius, E.: Indexical contents (1982) 0.02
    0.024785958 = product of:
      0.049571916 = sum of:
        0.049571916 = product of:
          0.09914383 = sum of:
            0.09914383 = weight(_text_:classification in 27) [ClassicSimilarity], result of:
              0.09914383 = score(doc=27,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5971325 = fieldWeight in 27, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=27)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  5. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.02
    0.024722286 = product of:
      0.04944457 = sum of:
        0.04944457 = product of:
          0.09888914 = sum of:
            0.09888914 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.09888914 = score(doc=880,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.9-22
  6. Garcia Marco, F.J.; Esteban Navarro, M.A.: On some contributions of the cognitive sciences and epistemology to a theory of classification (1993) 0.02
    0.02146527 = product of:
      0.04293054 = sum of:
        0.04293054 = product of:
          0.08586108 = sum of:
            0.08586108 = weight(_text_:classification in 5876) [ClassicSimilarity], result of:
              0.08586108 = score(doc=5876,freq=12.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5171319 = fieldWeight in 5876, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5876)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Intended is first of all a preliminary review of the implications that the new approaches to the theory of classification, mainly from cognitive psychology and epistemology may have for information work and research. As a secondary topic the scientific relations existing among information science, epistemology and the cognitive sciences are discussed. Classification is seen as a central activity in all daily and scientific activities, and, of course, of knowledge organization in information services. There is a mutual implication between classification and conceptualization, as the former moves in a natural way to the latter and the best result elaborated for classification is the concept. Research in concept theory is a need for a theory of classification. In this direction it is of outstanding importance to integrate the achievements of 'natural concept formation theory' (NCFT) as an alternative approach to conceptualization different from the traditional one of logicians and problem solving researchers. In conclusion both approaches are seen as being complementary: the NCFT approach being closer to the user and the logical one being more suitable for experts, including 'expert systems'
  7. Wüster, E.: Begriffs- und Themaklassifikation : Unterschiede in ihrem Wesen und in ihrer Anwendung (1971) 0.02
    0.02119053 = product of:
      0.04238106 = sum of:
        0.04238106 = product of:
          0.08476212 = sum of:
            0.08476212 = weight(_text_:22 in 3904) [ClassicSimilarity], result of:
              0.08476212 = score(doc=3904,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.46428138 = fieldWeight in 3904, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3904)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Nachrichten für Dokumentation. 22(1971) H.3, S.98-104 (T.1); H.4, S.143-150 (T.2)
  8. Dahlberg, I.: Concept and definition theory (1989) 0.02
    0.020447372 = product of:
      0.040894743 = sum of:
        0.040894743 = product of:
          0.081789486 = sum of:
            0.081789486 = weight(_text_:classification in 962) [ClassicSimilarity], result of:
              0.081789486 = score(doc=962,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.49260917 = fieldWeight in 962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.109375 = fieldNorm(doc=962)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Classification theory in the computer age: conversations across the disciplines. Proc. from the Conf. 18.-19.11.1988, Albany, NY
  9. Weissenhofer, P.: Conceptology in terminology : theory, semantics, and word-formation. A morpho-conceptually based approach to classification as exemplified by the English baseball terminology (1995) 0.02
    0.02023765 = product of:
      0.0404753 = sum of:
        0.0404753 = product of:
          0.0809506 = sum of:
            0.0809506 = weight(_text_:classification in 4632) [ClassicSimilarity], result of:
              0.0809506 = score(doc=4632,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.48755667 = fieldWeight in 4632, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4632)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This dissertation from the University of Vienna contains the following chapters: (1) Conceptological aspects in terminology theory. Post-Wüsterian sign models and the four-field model. Vagueness, prototypes, and the four-field model. Morphological aspects of terminology and prototype theory. Word-formation and its role in terminology theory and conceptology. (2) A morpho-conceptual classification system of the English baseball terminology. The classification system. Statistical results. Conclusions
  10. Dahlberg, I.: Begriffsarbeit in der Wissensorganisation (2010) 0.01
    0.014127021 = product of:
      0.028254041 = sum of:
        0.028254041 = product of:
          0.056508083 = sum of:
            0.056508083 = weight(_text_:22 in 3726) [ClassicSimilarity], result of:
              0.056508083 = score(doc=3726,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.30952093 = fieldWeight in 3726, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3726)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  11. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.01
    0.012648531 = product of:
      0.025297062 = sum of:
        0.025297062 = product of:
          0.050594125 = sum of:
            0.050594125 = weight(_text_:classification in 2527) [ClassicSimilarity], result of:
              0.050594125 = score(doc=2527,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.3047229 = fieldWeight in 2527, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2527)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The evolution of bibliographic classification schemes, from the end of the 19th century to our time, shows a trend of increasing possibilities to combine concepts in a classmark. While the early schemes, like DDC and LCC, were largely enumerative, more and more synthetic devices have appeared with common auxiliaries, facets, and phase relationships. The last editions of UDC and the UDC-derived FATKS project follow this evolution, by introducing more specific phase relationships and more common auxiliaries, like those for general properties and processes. This agrees with the Farradane's principle that each concept should have a place of unique definition, instead of being re-notated in each context where it occurs. This evolution appears to be unfinished, as even in most synthetic schemes many concepts have a different notation according to the disciplinary main classes where they occur. To overcome this limitation, main classes should be defined in terms of phenomena rather than disciplines: the Integrative Level Classification (ILC) research project is currently exploring this possibility. Examples with UDC, FATKS, and ILC notations are discussed.
  12. Szostak, R.: Complex concepts into basic concepts (2011) 0.01
    0.012648531 = product of:
      0.025297062 = sum of:
        0.025297062 = product of:
          0.050594125 = sum of:
            0.050594125 = weight(_text_:classification in 4926) [ClassicSimilarity], result of:
              0.050594125 = score(doc=4926,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.3047229 = fieldWeight in 4926, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4926)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interdisciplinary communication, and thus the rate of progress in scholarly understanding, would be greatly enhanced if scholars had access to a universal classification of documents or ideas not grounded in particular disciplines or cultures. Such a classification is feasible if complex concepts can be understood as some combination of more basic concepts. There appear to be five main types of concept theory in the philosophical literature. Each provides some support for the idea of breaking complex into basic concepts that can be understood across disciplines or cultures, but each has detractors. None of these criticisms represents a substantive obstacle to breaking complex concepts into basic concepts within information science. Can we take the subject entries in existing universal but discipline-based classifications, and break these into a set of more basic concepts that can be applied across disciplinary classes? The author performs this sort of analysis for Dewey classes 300 to 339.9. This analysis will serve to identify the sort of 'basic concepts' that would lie at the heart of a truly universal classification. There are two key types of basic concept: the things we study (individuals, rocks, trees), and the relationships among these (talking, moving, paying).
  13. Dahlberg, I.: Zur Theorie des Begriffs (1974) 0.01
    0.012392979 = product of:
      0.024785958 = sum of:
        0.024785958 = product of:
          0.049571916 = sum of:
            0.049571916 = weight(_text_:classification in 1617) [ClassicSimilarity], result of:
              0.049571916 = score(doc=1617,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.29856625 = fieldWeight in 1617, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1617)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A concept is regarded as the common element of both classification systems and thesauri. Reality and knowledge are not represented by words or terms but by the meanings "behind" these tokens. A concept of, say, an object, a property of an object, a process, etc. is derived from verbal statements on these as subjects and may therefore be defined as the whole of true and possible predicates that can be collected on a given subject. It is from these predicates that the characteristics of the corresponding concepts can be derived. Common characteristics in different concepts lead to relationsbetween concepts, which relations in turn are factors for the formation of concept systems. Different kinds of relationships as well as different kinds of concepts are distinguished. It is pointed out that an orderly supply of the elements for propositions (informative statements) on new knowledge requires the construction and availability of such concept systems
    Source
    International classification. 1(1974), S.12-19
  14. Storms, G.; VanMechelen, I.; DeBoeck, P.: Structural-analysis of the intension and extension of semantic concepts (1994) 0.01
    0.012361143 = product of:
      0.024722286 = sum of:
        0.024722286 = product of:
          0.04944457 = sum of:
            0.04944457 = weight(_text_:22 in 2574) [ClassicSimilarity], result of:
              0.04944457 = score(doc=2574,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.2708308 = fieldWeight in 2574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2574)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2000 19:17:40
  15. Bauer, G.: ¬Die vielseitigen Anwendungsmöglichkeiten des Kategorienprinzips bei der Wissensorganisation (2006) 0.01
    0.012361143 = product of:
      0.024722286 = sum of:
        0.024722286 = product of:
          0.04944457 = sum of:
            0.04944457 = weight(_text_:22 in 5710) [ClassicSimilarity], result of:
              0.04944457 = score(doc=5710,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.2708308 = fieldWeight in 5710, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5710)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.22-33
  16. Nedobity, W.: Concepts versus meaning as reflected by the works of E. Wüster and L. Wittgenstein (1989) 0.01
    0.011684213 = product of:
      0.023368426 = sum of:
        0.023368426 = product of:
          0.04673685 = sum of:
            0.04673685 = weight(_text_:classification in 791) [ClassicSimilarity], result of:
              0.04673685 = score(doc=791,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.28149095 = fieldWeight in 791, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=791)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    International classification. 16(1989), S.24-26
  17. Treude, L.: ¬Das Problem der Konzeptdefinition in der Wissensorganisation : über einen missglückten Versuch der Klärung (2013) 0.01
    0.010595265 = product of:
      0.02119053 = sum of:
        0.02119053 = product of:
          0.04238106 = sum of:
            0.04238106 = weight(_text_:22 in 3060) [ClassicSimilarity], result of:
              0.04238106 = score(doc=3060,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.23214069 = fieldWeight in 3060, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3060)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    LIBREAS: Library ideas. no.22, 2013, S.xx-xx
  18. Thiel, C.: ¬Der klassische und der moderne Begriff des Begriffs : Gedanken zur Geschichte der Begriffsbildung in den exakten Wissenschaften (1994) 0.01
    0.010327483 = product of:
      0.020654965 = sum of:
        0.020654965 = product of:
          0.04130993 = sum of:
            0.04130993 = weight(_text_:classification in 7868) [ClassicSimilarity], result of:
              0.04130993 = score(doc=7868,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.24880521 = fieldWeight in 7868, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=7868)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Up to the present day, difficulties have confronted all attempts at establishing a theory of concepts that would comprise the various kinds of concept-formation in the disciplines of the spectrum of sciences. Not a few philosophical dictionaries, under the entry 'concept', still offer doctrinies which were current far back in the history of philosophy and have little in coomon with concept-formations in the sciences today. The paper aims at an improvement in this situation. After a sketch of the 'classical' notion of concept, already developed in antiquity (essentially a logic of 'classification', although 'class-formation' in tis present understanding had not yet been conceived), the canonical modern doctrine of concepts is outlined. With an eye to application in the exact sciences, it is shown how in the nineteenth century the view of concept as an additive complex of characteristics yields to a functional approach systematized, in the last quarter of the century, by classical quantificational logic. Almost simultaneously, Mach, Frege, Peano, Weyl and others set out to shape the modern theory of abstraction. It is these two theories that today permit philosophers of science not only to deal with functional processes of concept-formation but also to represent in a formally coorect manner metalinguistic propositions about concepts and their properties. Thus it seems that the fundamental tasks of a modern theory of concept have finally been taken care of
    Series
    Studies in classification, data analysis, and knowledge organization
  19. Hjoerland, B.: Concept theory (2009) 0.01
    0.010327483 = product of:
      0.020654965 = sum of:
        0.020654965 = product of:
          0.04130993 = sum of:
            0.04130993 = weight(_text_:classification in 3461) [ClassicSimilarity], result of:
              0.04130993 = score(doc=3461,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.24880521 = fieldWeight in 3461, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3461)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
  20. Diemer, A.: Gegenstandstheoretische Grundlagen der Klassifikation (1977) 0.01
    0.010223686 = product of:
      0.020447372 = sum of:
        0.020447372 = product of:
          0.040894743 = sum of:
            0.040894743 = weight(_text_:classification in 1521) [ClassicSimilarity], result of:
              0.040894743 = score(doc=1521,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.24630459 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Auch u.d.T. 'Studien zur allgemeinen Ordnungslehre' in: International Classification 1(1974) S.61-68