Search (159 results, page 1 of 8)

  • × theme_ss:"Informetrie"
  1. Liu, D.-R.; Shih, M.-J.: Hybrid-patent classification based on patent-network analysis (2011) 0.06
    0.058968708 = product of:
      0.117937416 = sum of:
        0.117937416 = sum of:
          0.08261986 = weight(_text_:classification in 4189) [ClassicSimilarity], result of:
            0.08261986 = score(doc=4189,freq=16.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.49761042 = fieldWeight in 4189, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4189)
          0.03531755 = weight(_text_:22 in 4189) [ClassicSimilarity], result of:
            0.03531755 = score(doc=4189,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.19345059 = fieldWeight in 4189, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4189)
      0.5 = coord(1/2)
    
    Abstract
    Effective patent management is essential for organizations to maintain their competitive advantage. The classification of patents is a critical part of patent management and industrial analysis. This study proposes a hybrid-patent-classification approach that combines a novel patent-network-based classification method with three conventional classification methods to analyze query patents and predict their classes. The novel patent network contains various types of nodes that represent different features extracted from patent documents. The nodes are connected based on the relationship metrics derived from the patent metadata. The proposed classification method predicts a query patent's class by analyzing all reachable nodes in the patent network and calculating their relevance to the query patent. It then classifies the query patent with a modified k-nearest neighbor classifier. To further improve the approach, we combine it with content-based, citation-based, and metadata-based classification methods to develop a hybrid-classification approach. We evaluate the performance of the hybrid approach on a test dataset of patent documents obtained from the U.S. Patent and Trademark Office, and compare its performance with that of the three conventional methods. The results demonstrate that the proposed patent-network-based approach yields more accurate class predictions than the patent network-based approach.
    Date
    22. 1.2011 13:04:21
  2. Kronegger, L.; Mali, F.; Ferligoj, A.; Doreian, P.: Classifying scientific disciplines in Slovenia : a study of the evolution of collaboration structures (2015) 0.05
    0.04597649 = product of:
      0.09195298 = sum of:
        0.09195298 = sum of:
          0.049571916 = weight(_text_:classification in 1639) [ClassicSimilarity], result of:
            0.049571916 = score(doc=1639,freq=4.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.29856625 = fieldWeight in 1639, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.046875 = fieldNorm(doc=1639)
          0.04238106 = weight(_text_:22 in 1639) [ClassicSimilarity], result of:
            0.04238106 = score(doc=1639,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.23214069 = fieldWeight in 1639, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1639)
      0.5 = coord(1/2)
    
    Abstract
    We explore classifying scientific disciplines including their temporal features by focusing on their collaboration structures over time. Bibliometric data for Slovenian researchers registered at the Slovenian Research Agency were used. These data were obtained from the Slovenian National Current Research Information System. We applied a recently developed hierarchical clustering procedure for symbolic data to the coauthorship structure of scientific disciplines. To track temporal changes, we divided data for the period 1986-2010 into five 5-year time periods. The clusters of disciplines for the Slovene science system revealed 5 clusters of scientific disciplines that, in large measure, correspond with the official national classification of sciences. However, there were also some significant differences pointing to the need for a dynamic classification system of sciences to better characterize them. Implications stemming from these results, especially with regard to classifying scientific disciplines, understanding the collaborative structure of science, and research and development policies, are discussed.
    Date
    21. 1.2015 14:55:22
  3. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.04
    0.039578542 = product of:
      0.079157084 = sum of:
        0.079157084 = sum of:
          0.02921053 = weight(_text_:classification in 1291) [ClassicSimilarity], result of:
            0.02921053 = score(doc=1291,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.17593184 = fieldWeight in 1291, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1291)
          0.049946558 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
            0.049946558 = score(doc=1291,freq=4.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.27358043 = fieldWeight in 1291, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1291)
      0.5 = coord(1/2)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
  4. Camacho-Miñano, M.-del-Mar; Núñez-Nickel, M.: ¬The multilayered nature of reference selection (2009) 0.04
    0.03871685 = product of:
      0.0774337 = sum of:
        0.0774337 = sum of:
          0.03505264 = weight(_text_:classification in 2751) [ClassicSimilarity], result of:
            0.03505264 = score(doc=2751,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.21111822 = fieldWeight in 2751, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.046875 = fieldNorm(doc=2751)
          0.04238106 = weight(_text_:22 in 2751) [ClassicSimilarity], result of:
            0.04238106 = score(doc=2751,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.23214069 = fieldWeight in 2751, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2751)
      0.5 = coord(1/2)
    
    Abstract
    Why authors choose some references in preference to others is a question that is still not wholly answered despite its being of interest to scientists. The relevance of references is twofold: They are a mechanism for tracing the evolution of science, and because they enhance the image of the cited authors, citations are a widely known and used indicator of scientific endeavor. Following an extensive review of the literature, we selected all papers that seek to answer the central question and demonstrate that the existing theories are not sufficient: Neither citation nor indicator theory provides a complete and convincing answer. Some perspectives in this arena remain, which are isolated from the core literature. The purpose of this article is to offer a fresh perspective on a 30-year-old problem by extending the context of the discussion. We suggest reviving the discussion about citation theories with a new perspective, that of the readers, by layers or phases, in the final choice of references, allowing for a new classification in which any paper, to date, could be included.
    Date
    22. 3.2009 19:05:07
  5. Ridenour, L.: Boundary objects : measuring gaps and overlap between research areas (2016) 0.04
    0.03871685 = product of:
      0.0774337 = sum of:
        0.0774337 = sum of:
          0.03505264 = weight(_text_:classification in 2835) [ClassicSimilarity], result of:
            0.03505264 = score(doc=2835,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.21111822 = fieldWeight in 2835, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.046875 = fieldNorm(doc=2835)
          0.04238106 = weight(_text_:22 in 2835) [ClassicSimilarity], result of:
            0.04238106 = score(doc=2835,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.23214069 = fieldWeight in 2835, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2835)
      0.5 = coord(1/2)
    
    Abstract
    The aim of this paper is to develop methodology to determine conceptual overlap between research areas. It investigates patterns of terminology usage in scientific abstracts as boundary objects between research specialties. Research specialties were determined by high-level classifications assigned by Thomson Reuters in their Essential Science Indicators file, which provided a strictly hierarchical classification of journals into 22 categories. Results from the query "network theory" were downloaded from the Web of Science. From this file, two top-level groups, economics and social sciences, were selected and topically analyzed to provide a baseline of similarity on which to run an informetric analysis. The Places & Spaces Map of Science (Klavans and Boyack 2007) was used to determine the proximity of disciplines to one another in order to select the two disciplines use in the analysis. Groups analyzed share common theories and goals; however, groups used different language to describe their research. It was found that 61% of term words were shared between the two groups.
  6. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.03
    0.03226404 = product of:
      0.06452808 = sum of:
        0.06452808 = sum of:
          0.02921053 = weight(_text_:classification in 586) [ClassicSimilarity], result of:
            0.02921053 = score(doc=586,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.17593184 = fieldWeight in 586, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=586)
          0.03531755 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
            0.03531755 = score(doc=586,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.19345059 = fieldWeight in 586, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=586)
      0.5 = coord(1/2)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
  7. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.03
    0.03226404 = product of:
      0.06452808 = sum of:
        0.06452808 = sum of:
          0.02921053 = weight(_text_:classification in 4186) [ClassicSimilarity], result of:
            0.02921053 = score(doc=4186,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.17593184 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
          0.03531755 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
            0.03531755 = score(doc=4186,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.19345059 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
      0.5 = coord(1/2)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
  8. Nicholls, P.T.: Empirical validation of Lotka's law (1986) 0.03
    0.028254041 = product of:
      0.056508083 = sum of:
        0.056508083 = product of:
          0.113016166 = sum of:
            0.113016166 = weight(_text_:22 in 5509) [ClassicSimilarity], result of:
              0.113016166 = score(doc=5509,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.61904186 = fieldWeight in 5509, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=5509)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Information processing and management. 22(1986), S.417-419
  9. Nicolaisen, J.: Citation analysis (2007) 0.03
    0.028254041 = product of:
      0.056508083 = sum of:
        0.056508083 = product of:
          0.113016166 = sum of:
            0.113016166 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.113016166 = score(doc=6091,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 19:53:22
  10. Fiala, J.: Information flood : fiction and reality (1987) 0.03
    0.028254041 = product of:
      0.056508083 = sum of:
        0.056508083 = product of:
          0.113016166 = sum of:
            0.113016166 = weight(_text_:22 in 1080) [ClassicSimilarity], result of:
              0.113016166 = score(doc=1080,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.61904186 = fieldWeight in 1080, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=1080)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Thermochimica acta. 110(1987), S.11-22
  11. Su, Y.; Han, L.-F.: ¬A new literature growth model : variable exponential growth law of literature (1998) 0.02
    0.024973279 = product of:
      0.049946558 = sum of:
        0.049946558 = product of:
          0.099893115 = sum of:
            0.099893115 = weight(_text_:22 in 3690) [ClassicSimilarity], result of:
              0.099893115 = score(doc=3690,freq=4.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.54716086 = fieldWeight in 3690, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3690)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 5.1999 19:22:35
  12. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.02
    0.024973279 = product of:
      0.049946558 = sum of:
        0.049946558 = product of:
          0.099893115 = sum of:
            0.099893115 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.099893115 = score(doc=3925,freq=4.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 15:22:28
  13. Stock, W.G.: Informetrische Untersuchungsmethoden auf der Grundlage der Textwortmethode (1984) 0.02
    0.024785958 = product of:
      0.049571916 = sum of:
        0.049571916 = product of:
          0.09914383 = sum of:
            0.09914383 = weight(_text_:classification in 721) [ClassicSimilarity], result of:
              0.09914383 = score(doc=721,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5971325 = fieldWeight in 721, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=721)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the mathematical basis of scientometrics involving text keywords independent of thesauri and classification schemes
    Source
    International classification. 11(1984) no.3, S.151-157
  14. Diodato, V.: Dictionary of bibliometrics (1994) 0.02
    0.024722286 = product of:
      0.04944457 = sum of:
        0.04944457 = product of:
          0.09888914 = sum of:
            0.09888914 = weight(_text_:22 in 5666) [ClassicSimilarity], result of:
              0.09888914 = score(doc=5666,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5416616 = fieldWeight in 5666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5666)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: Journal of library and information science 22(1996) no.2, S.116-117 (L.C. Smith)
  15. Bookstein, A.: Informetric distributions : I. Unified overview (1990) 0.02
    0.024722286 = product of:
      0.04944457 = sum of:
        0.04944457 = product of:
          0.09888914 = sum of:
            0.09888914 = weight(_text_:22 in 6902) [ClassicSimilarity], result of:
              0.09888914 = score(doc=6902,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5416616 = fieldWeight in 6902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6902)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 18:55:29
  16. Bookstein, A.: Informetric distributions : II. Resilience to ambiguity (1990) 0.02
    0.024722286 = product of:
      0.04944457 = sum of:
        0.04944457 = product of:
          0.09888914 = sum of:
            0.09888914 = weight(_text_:22 in 4689) [ClassicSimilarity], result of:
              0.09888914 = score(doc=4689,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5416616 = fieldWeight in 4689, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4689)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 18:55:55
  17. Chung, Y.-K.: Bradford distribution and core authors in classification systems literature (1994) 0.02
    0.023368426 = product of:
      0.04673685 = sum of:
        0.04673685 = product of:
          0.0934737 = sum of:
            0.0934737 = weight(_text_:classification in 5066) [ClassicSimilarity], result of:
              0.0934737 = score(doc=5066,freq=8.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5629819 = fieldWeight in 5066, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5066)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Bradford's law of scatter was applied to the analysis of the authors of source documents on the subject of classification schemes, published in core periodicals over the period 1981-1990. Results indicated that: core authors of the international classification system literature are Library of Congress, M. Dewey, S. Ranganathan, J. Comaroni, A. Neelameghan, L. Chan and K. Markey; the highly cited authors are linked either to the developers of the classification schemes or to a research centre, or else they authored the most frequently cited books; and the data conforms to Bradford's Law of Scatter
  18. Lewison, G.: ¬The work of the Bibliometrics Research Group (City University) and associates (2005) 0.02
    0.02119053 = product of:
      0.04238106 = sum of:
        0.04238106 = product of:
          0.08476212 = sum of:
            0.08476212 = weight(_text_:22 in 4890) [ClassicSimilarity], result of:
              0.08476212 = score(doc=4890,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.46428138 = fieldWeight in 4890, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4890)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2007 17:02:22
  19. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.02
    0.02119053 = product of:
      0.04238106 = sum of:
        0.04238106 = product of:
          0.08476212 = sum of:
            0.08476212 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
              0.08476212 = score(doc=1239,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.46428138 = fieldWeight in 1239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1239)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    18. 3.2014 19:13:22
  20. Peritz, B.C.: ¬A classification of citation roles for the social sciences and related fields (1983) 0.02
    0.020447372 = product of:
      0.040894743 = sum of:
        0.040894743 = product of:
          0.081789486 = sum of:
            0.081789486 = weight(_text_:classification in 3073) [ClassicSimilarity], result of:
              0.081789486 = score(doc=3073,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.49260917 = fieldWeight in 3073, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3073)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    

Authors

Years

Languages

  • e 149
  • d 9
  • ro 1
  • More… Less…

Types

  • a 157
  • m 2
  • el 1
  • s 1
  • More… Less…