Search (210 results, page 11 of 11)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  1. Duncan, E.B.: Structuring knowledge bases for designers of learning materials (1989) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 2478) [ClassicSimilarity], result of:
              0.02921053 = score(doc=2478,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 2478, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2478)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Three pre-web articles about using hypertext for knowledge representation. Duncan discusses how to use graphical, hypertext displays (she used Xerox PARC's NoteCards on a Xerox 1186 workstation) along with concept maps and facet analysis, a combination that would now be done with topic maps. The screen shots of her graphical displays are quite interesting. Her interest in facets is in how to use them to show things to different people in different ways, for example, so that experts can enter knowledge into a system in one way while novices can see it in another. Duncan found that facet labels (e.g. Process and Product) prompted the expert to think of related concepts when inputting data, and made navigation easier for users. Facets can be joined together, e.g. "Agents (causing) Process," leading to a "reasoning system." She is especially interested in how to show relstionships between two things: e.g., A causes B, A uses B, A occurs in B. This is an important question in facet theory, but probably not worth worrying about in a small online classification where the relations are fixed and obvious. These articles may be difficult to find, in which case the reader can find a nice sumary in the next article, by Ellis and Vasconcelos (2000). Anyone interested in tracing the history of facets and hypertext will, however, want to see the originals.
  2. Duncan, E.B.: ¬A faceted approach to hypertext (1989) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 2480) [ClassicSimilarity], result of:
              0.02921053 = score(doc=2480,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 2480, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2480)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Three pre-web articles about using hypertext for knowledge representation. Duncan discusses how to use graphical, hypertext displays (she used Xerox PARC's NoteCards on a Xerox 1186 workstation) along with concept maps and facet analysis, a combination that would now be done with topic maps. The screen shots of her graphical displays are quite interesting. Her interest in facets is in how to use them to show things to different people in different ways, for example, so that experts can enter knowledge into a system in one way while novices can see it in another. Duncan found that facet labels (e.g. Process and Product) prompted the expert to think of related concepts when inputting data, and made navigation easier for users. Facets can be joined together, e.g. "Agents (causing) Process," leading to a "reasoning system." She is especially interested in how to show relstionships between two things: e.g., A causes B, A uses B, A occurs in B. This is an important question in facet theory, but probably not worth worrying about in a small online classification where the relations are fixed and obvious. These articles may be difficult to find, in which case the reader can find a nice sumary in the next article, by Ellis and Vasconcelos (2000). Anyone interested in tracing the history of facets and hypertext will, however, want to see the originals.
  3. Duncan, E.B.: ¬A concept-map thesaurus as a knowledge-based hypertext interface to a bibliographic database (1990) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 2481) [ClassicSimilarity], result of:
              0.02921053 = score(doc=2481,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 2481, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2481)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Three pre-web articles about using hypertext for knowledge representation. Duncan discusses how to use graphical, hypertext displays (she used Xerox PARC's NoteCards on a Xerox 1186 workstation) along with concept maps and facet analysis, a combination that would now be done with topic maps. The screen shots of her graphical displays are quite interesting. Her interest in facets is in how to use them to show things to different people in different ways, for example, so that experts can enter knowledge into a system in one way while novices can see it in another. Duncan found that facet labels (e.g. Process and Product) prompted the expert to think of related concepts when inputting data, and made navigation easier for users. Facets can be joined together, e.g. "Agents (causing) Process," leading to a "reasoning system." She is especially interested in how to show relstionships between two things: e.g., A causes B, A uses B, A occurs in B. This is an important question in facet theory, but probably not worth worrying about in a small online classification where the relations are fixed and obvious. These articles may be difficult to find, in which case the reader can find a nice sumary in the next article, by Ellis and Vasconcelos (2000). Anyone interested in tracing the history of facets and hypertext will, however, want to see the originals.
  4. Tudhope, D.; Binding, C.; Blocks, D.; Cuncliffe, D.: Representation and retrieval in faceted systems (2003) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 2703) [ClassicSimilarity], result of:
              0.02921053 = score(doc=2703,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 2703, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2703)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses two inter-related themes: the retrieval potential of faceted thesauri and XML representations of fundamental facets. Initial findings are discussed from the ongoing 'FACET' project, in collaboration with the National Museum of Science and Industry. The work discussed seeks to take advantage of the structure afforded by faceted systems for multi-term queries and flexible matching, focusing in this paper an the Art and Architecture Thesaurus. A multi-term matching function yields ranked results with partial matches via semantic term expansion, based an a measure of distance over the semantic index space formed by thesaurus relationships. Our intention is to drive the system from general representations and a common query structure and interface. To this end, we are developing an XML representation based an work by the Classification Research Group an fundamental facets or categories. The XML representation maps categories to particular thesauri and hierarchies. The system interface, which is configured by the mapping, incorporates a thesaurus browser with navigation history together with a term search facility and drag and drop query builder.
  5. O'Neill, E.T.; Childress, E.; Dean, R.; Kammerer, K.; Vizine-Goetz, D.; Chan, L.M.; El-Hoshy, L.: FAST: faceted application of subject terminology (2003) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 3816) [ClassicSimilarity], result of:
              0.02921053 = score(doc=3816,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 3816, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3816)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Subject retrieval in a networked environment: Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC. Ed.: I.C. McIlwaine
  6. Schallier, W.: Why organize information if you can find it? : UDC and libraries in an Internet world (2007) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 549) [ClassicSimilarity], result of:
              0.02921053 = score(doc=549,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 549, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=549)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Belgians Otlet and LaFontaine created the Universal Decimal Classification in order to collect and organize the world's knowledge. This happened in an age when information was almost exclusively made available by libraries. Since the internet, the quantity of information outside libraries is enormous and keeps growing every day. The internet is accessible to anybody, it is fundamentally unorganized and its content changes constantly. Collecting and organizing the world's knowledge seem to have become an impossible ambition. Perhaps it is even unnecessary, since search engines make information retrievable now. And why would we organize information if we can find it? So what will be the role of UDC and libraries in this internet environment? Libraries can still play a role as a major information provider, if they adapt fully to the expectations of a modern end user. The design and the functionalities of online catalogues should allow maximal accessibility, usability and active participation of the end user in the internet environment. Metadata, like UDC, should maximize the visibility of information, enrich it and invite the end user to assign metadata himself.
  7. Oh, K.E.; Joo, S.; Jeong, E.-J.: Online consumer health information organization : users' perspectives on faceted navigation (2015) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 2197) [ClassicSimilarity], result of:
              0.02921053 = score(doc=2197,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 2197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2197)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We investigate facets of online health information that are preferred, easy-to-use and useful in accessing online consumer health information from a user's perspective. In this study, the existing classification structure of 20 top ranked consumer health information websites in South Korea were analyzed, and nine facets that are used in organizing health information in those websites were identified. Based on the identified facets, an online survey, which asked participants' preferences for as well as perceived ease-of-use and usefulness of each facet in accessing online health information, was conducted. The analysis of the survey results showed that among the nine facets, the "diseases & conditions" and "body part" facets were most preferred, and perceived as easy-to-use and useful in accessing online health information. In contrast, "age," "gender," and "alternative medicine" facets were perceived as relatively less preferred, easy-to-use and useful. This research study has direct implications for organization and design of health information websites in that it suggests facets to include and avoid in organizing and providing access points to online health information.
  8. Fujita, M.; Lopes, L.; Moreira, W.; Piovezan dos Santos, L.B.; Andrade e Cruz, M.C.; Rodrigues de Barros Ribas, R.: Construction and evaluation of hierarchical structures of indexing languages for online catalogs of libraries : an experience of the São Paulo State University (UNESP) (2018) 0.01
    0.0073026326 = product of:
      0.014605265 = sum of:
        0.014605265 = product of:
          0.02921053 = sum of:
            0.02921053 = weight(_text_:classification in 4307) [ClassicSimilarity], result of:
              0.02921053 = score(doc=4307,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.17593184 = fieldWeight in 4307, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4307)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The construction and updating of indexing languages depend on the organization of their hierarchical structures in order to determine the classification of related terms and, above all, to allow a constant updating of vocabulary, a condition for knowledge evolution. The elaboration of an indexing language for online catalogs of libraries' networks is important considering the diversity and specificity of knowledge areas. From this perspective, the present paper reports on the work of a team of catalogers and researchers engaged in the construction of a hierarchical structure of an indexing language for an online catalog of a university library's network. The work on hierarchical structures began by defining the categories and subcategories that form the indexing language macrostructure by using the parameters of the Library of Congress Subject Headings , the National Library Terminology and the Vocabulary of the University of São Paulo Library's system. Throughout the stages of the elaboration process of the macrostructure, difficulties and improvements were observed and discussed. The results enabled the assessment of the hierarchical structures of the languages used in the organization of the superordinate and subordinate terms, which has contributed to the systematization of operational procedures contained in an indexing language manual for online catalogs of libraries.
  9. Ménard, E.; Mas, S.; Alberts, I.: Faceted classification for museum artefacts : a methodology to support web site development of large cultural organizations (2010) 0.01
    0.0058421064 = product of:
      0.011684213 = sum of:
        0.011684213 = product of:
          0.023368426 = sum of:
            0.023368426 = weight(_text_:classification in 3945) [ClassicSimilarity], result of:
              0.023368426 = score(doc=3945,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.14074548 = fieldWeight in 3945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3945)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  10. Oberhauser, O.: Klassifikatorische Erschließung und Recherche im Österreichischen Verbundkatalog (2005) 0.01
    0.005111843 = product of:
      0.010223686 = sum of:
        0.010223686 = product of:
          0.020447372 = sum of:
            0.020447372 = weight(_text_:classification in 3701) [ClassicSimilarity], result of:
              0.020447372 = score(doc=3701,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.12315229 = fieldWeight in 3701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3701)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Dieser Beitrag referiert und dokumentiert die klassifikationsbasierten Anzeige- und Recherchemöglichkeiten, die 2005 anlässlich einer Versionsumstellung erstmals im OPAC des Österreichischen Bibliothekenverbundes implementiert wurden. Dazu wird einleitend ein kurzer Statusbericht über die im Titeldatenmaterial des Zentralkatologes vorhandenen Notationen gegeben. Danach werden die auf den Notationen der ZDB-Systematik, der Regensburger Verbundklassifikotion (RVK) und der Mathematics Subject Classification (MSC) aufbauenden OPAC-Features vorgestellt. Des weiteren wird ein bereits vorliegendes, aber noch nicht realisiertes Konzept zur Implementierung der MSC als Normdatei präsentiert, auf dem auch die künftige Verwendung der Basisklassifikation (BK) aufsetzen könnte.

Authors

Years

Languages

Types

  • a 178
  • el 27
  • s 7
  • m 6
  • p 1
  • r 1
  • x 1
  • More… Less…