Search (44 results, page 1 of 3)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Mikacic, M.: Statistical system for subject designation (SSSD) for libraries in Croatia (1996) 0.06
    0.06332567 = product of:
      0.12665135 = sum of:
        0.12665135 = sum of:
          0.04673685 = weight(_text_:classification in 2943) [ClassicSimilarity], result of:
            0.04673685 = score(doc=2943,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.28149095 = fieldWeight in 2943, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.0625 = fieldNorm(doc=2943)
          0.079914495 = weight(_text_:22 in 2943) [ClassicSimilarity], result of:
            0.079914495 = score(doc=2943,freq=4.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.4377287 = fieldWeight in 2943, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=2943)
      0.5 = coord(1/2)
    
    Date
    31. 7.2006 14:22:21
    Source
    Cataloging and classification quarterly. 22(1996) no.1, S.77-93
  2. Free text in information systems: capabilities and limitations (1985) 0.02
    0.024785958 = product of:
      0.049571916 = sum of:
        0.049571916 = product of:
          0.09914383 = sum of:
            0.09914383 = weight(_text_:classification in 2045) [ClassicSimilarity], result of:
              0.09914383 = score(doc=2045,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5971325 = fieldWeight in 2045, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2045)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Diese Empfehlungen liegen auch in deutscher Übersetzung vor (abgedruckt ebenfalls in International classification), leider ist die Übersetzung nicht in allen Aussagen recht gelungen, so daß das Original vorzuziehen ist
    Source
    International classification. 12(1985), S.95-98
  3. Svenonius, E.: Indexical contents (1982) 0.02
    0.024785958 = product of:
      0.049571916 = sum of:
        0.049571916 = product of:
          0.09914383 = sum of:
            0.09914383 = weight(_text_:classification in 27) [ClassicSimilarity], result of:
              0.09914383 = score(doc=27,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5971325 = fieldWeight in 27, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=27)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  4. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.02
    0.024722286 = product of:
      0.04944457 = sum of:
        0.04944457 = product of:
          0.09888914 = sum of:
            0.09888914 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
              0.09888914 = score(doc=4506,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5416616 = fieldWeight in 4506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    8.10.2000 11:52:22
  5. Fugmann, R.: ¬The complementarity of natural and indexing languages (1982) 0.02
    0.023368426 = product of:
      0.04673685 = sum of:
        0.04673685 = product of:
          0.0934737 = sum of:
            0.0934737 = weight(_text_:classification in 7648) [ClassicSimilarity], result of:
              0.0934737 = score(doc=7648,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.5629819 = fieldWeight in 7648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.125 = fieldNorm(doc=7648)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    International classification. 9(1982), S.140-144
  6. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.02
    0.02258483 = product of:
      0.04516966 = sum of:
        0.04516966 = sum of:
          0.020447372 = weight(_text_:classification in 3644) [ClassicSimilarity], result of:
            0.020447372 = score(doc=3644,freq=2.0), product of:
              0.16603322 = queryWeight, product of:
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.05213454 = queryNorm
              0.12315229 = fieldWeight in 3644, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1847067 = idf(docFreq=4974, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
          0.024722286 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
            0.024722286 = score(doc=3644,freq=2.0), product of:
              0.18256627 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05213454 = queryNorm
              0.1354154 = fieldWeight in 3644, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3644)
      0.5 = coord(1/2)
    
    Abstract
    Calvin Mooers' work toward the resolution of the problem of ambiguity in indexing went unrecognized for years. At the time he introduced the "descriptor" - a term with a very distinct meaning-indexers were, for the most part, taking index terms directly from the document, without either rationalizing them with context or normalizing them with some kind of classification. It is ironic that Mooers' term came to be attached to the popular but unsophisticated indexing methods which he was trying to root out. Simply expressed, what Mooers did was to take the dictionary definitions of terms and redefine them so clearly that they could not be used in any context except that provided by the new definition. He did, at great pains, construct such meanings for over four hundred words; disambiguation and specificity were sought after and found for these words. He proposed that all indexers adopt this method so that when the index supplied a term, it also supplied the exact meaning for that term as used in the indexed document. The same term used differently in another document would be defined differently and possibly renamed to avoid ambiguity. The disambiguation was achieved by using unabridged dictionaries and other sources of defining terminology. In practice, this tends to produce circularity in definition, that is, word A refers to word B which refers to word C which refers to word A. It was necessary, therefore, to break this chain by creating a new, definitive meaning for each word. Eventually, means such as those used by Austin (q.v.) for PRECIS achieved the same purpose, but by much more complex means than just creating a unique definition of each term. Mooers, however, was probably the first to realize how confusing undefined terminology could be. Early automatic indexers dealt with distinct disciplines and, as long as they did not stray beyond disciplinary boundaries, a quick and dirty keyword approach was satisfactory. The trouble came when attempts were made to make a combined index for two or more distinct disciplines. A number of processes have since been developed, mostly involving tagging of some kind or use of strings. Mooers' solution has rarely been considered seriously and probably would be extremely difficult to apply now because of so much interdisciplinarity. But for a specific, weIl defined field, it is still weIl worth considering. Mooers received training in mathematics and physics from the University of Minnesota and the Massachusetts Institute of Technology. He was the founder of Zator Company, which developed and marketed a coded card information retrieval system, and of Rockford Research, Inc., which engages in research in information science. He is the inventor of the TRAC computer language.
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.
  7. Szostak, R.: Classifying relationships (2012) 0.02
    0.020447372 = product of:
      0.040894743 = sum of:
        0.040894743 = product of:
          0.081789486 = sum of:
            0.081789486 = weight(_text_:classification in 1923) [ClassicSimilarity], result of:
              0.081789486 = score(doc=1923,freq=8.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.49260917 = fieldWeight in 1923, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1923)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper develops a classification of relationships among things, with many potential uses within information science. Unlike previous classifications of relationships, it is hoped that this classification will provide benefits that exceed the costs of application. The major theoretical innovation is to stress the importance of causal relationships, albeit not exclusively. The paper also stresses the advantages of using compounds of simpler terms: verbs compounded with other verbs, adverbs, or things. The classification builds upon a review of the previous literature and a broad inductive survey of potential sources in a recent article in this journal. The result is a classification that is both manageable in size and easy to apply and yet encompasses all of the relationships necessary for classifying documents or even ideas.
  8. Szostak, R.: Toward a classification of relationships (2012) 0.02
    0.020447372 = product of:
      0.040894743 = sum of:
        0.040894743 = product of:
          0.081789486 = sum of:
            0.081789486 = weight(_text_:classification in 131) [ClassicSimilarity], result of:
              0.081789486 = score(doc=131,freq=8.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.49260917 = fieldWeight in 131, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=131)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Several attempts have been made to develop a classification of relationships, but none of these have been widely accepted or applied within information science. It would seem that information scientists, while appreciating the potential value of a classification of relationships, have found all previous classifications to be too complicated in application relative to the benefits they provide. This paper begins by reviewing previous attempts and drawing lessons from these. It then surveys a range of sources within and beyond the field of knowledge organization that can together provide the basis for the development of a novel classification of relationships. One critical insight is that relationships governing causation/influence should be accorded priority.
  9. Vickery, B.C.: Structure and function in retrieval languages (1997) 0.02
    0.02023765 = product of:
      0.0404753 = sum of:
        0.0404753 = product of:
          0.0809506 = sum of:
            0.0809506 = weight(_text_:classification in 572) [ClassicSimilarity], result of:
              0.0809506 = score(doc=572,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.48755667 = fieldWeight in 572, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=572)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    From classification to 'knowledge organization': Dorking revisited or 'past is prelude'. A collection of reprints to commemorate the firty year span between the Dorking Conference (First International Study Conference on Classification Research 1957) and the Sixth International Study Conference on Classification Research (London 1997). Ed.: A. Gilchrist
  10. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.02
    0.019595021 = product of:
      0.039190043 = sum of:
        0.039190043 = product of:
          0.078380086 = sum of:
            0.078380086 = weight(_text_:classification in 1138) [ClassicSimilarity], result of:
              0.078380086 = score(doc=1138,freq=10.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.4720747 = fieldWeight in 1138, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1138)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
  11. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.02
    0.017658776 = product of:
      0.03531755 = sum of:
        0.03531755 = product of:
          0.0706351 = sum of:
            0.0706351 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.0706351 = score(doc=6089,freq=2.0), product of:
                0.18256627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05213454 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.11-22
  12. Gopinath, M.A.; Prasad, K.N.: Compatibility of the principles for design of thesaurus and classification scheme (1976) 0.02
    0.01752632 = product of:
      0.03505264 = sum of:
        0.03505264 = product of:
          0.07010528 = sum of:
            0.07010528 = weight(_text_:classification in 2943) [ClassicSimilarity], result of:
              0.07010528 = score(doc=2943,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.42223644 = fieldWeight in 2943, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2943)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  13. Dietze, J.: Informationsrecherchesprache und deren Lexik : Bemerkungen zur Terminologiediskussion (1980) 0.02
    0.01752632 = product of:
      0.03505264 = sum of:
        0.03505264 = product of:
          0.07010528 = sum of:
            0.07010528 = weight(_text_:classification in 32) [ClassicSimilarity], result of:
              0.07010528 = score(doc=32,freq=8.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.42223644 = fieldWeight in 32, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=32)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Information research consists of the comparison of 2 sources of information - that of formal description and content analysis and that based on the needs of the user. Information research filters identical elements from the sources by means of document and research cross-sections. Establishing such cross-sections for scientific documents and research questions is made possible by classification. Through the definition of the terms 'class' and 'classification' it becomes clear that the terms 'hierarchic classification' and 'classification' cannot be used synonymously. The basic types of information research languages are both hierarchic and non-hierarchic arising from the structure of lexicology and the paradigmatic relations of the lexicological units. The names for the lexicological units ('descriptor' and 'subject haedings') are synonymous, but it is necessary to differentiate between the terms 'descriptor language' and 'information research thesaurus'. The principles of precoordination and post-coordination as applied to word formation are unsuitable for the typification of information research languages
  14. Hutchins, W.J.: Languages of indexing and classification : a linguistic study of structures and functions (1978) 0.02
    0.01752632 = product of:
      0.03505264 = sum of:
        0.03505264 = product of:
          0.07010528 = sum of:
            0.07010528 = weight(_text_:classification in 2968) [ClassicSimilarity], result of:
              0.07010528 = score(doc=2968,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.42223644 = fieldWeight in 2968, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2968)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  15. Melton, J.S.: ¬A use for the techniques of structural linguistics in documentation research (1965) 0.02
    0.016523972 = product of:
      0.033047944 = sum of:
        0.033047944 = product of:
          0.06609589 = sum of:
            0.06609589 = weight(_text_:classification in 834) [ClassicSimilarity], result of:
              0.06609589 = score(doc=834,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.39808834 = fieldWeight in 834, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=834)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Index language (the system of symbols for representing subject content after analysis) is considered as a separate component and a variable in an information retrieval system. It is suggested that for purposes of testing, comparing and evaluating index language, the techniques of structural linguistics may provide a descriptive methodology by which all such languages (hierarchical and faceted classification, analytico-synthetic indexing, traditional subject indexing, indexes and classifications based on automatic text analysis, etc.) could be described in term of a linguistic model, and compared on a common basis
    Source
    Classification research. Proc. 2nd Int. Study Conf. ... Elsinore, 14.-18.8.1964. Ed.: P. Atherton
  16. Fugmann, R.: Unusual possibilities in indexing and classification (1990) 0.02
    0.016523972 = product of:
      0.033047944 = sum of:
        0.033047944 = product of:
          0.06609589 = sum of:
            0.06609589 = weight(_text_:classification in 4781) [ClassicSimilarity], result of:
              0.06609589 = score(doc=4781,freq=4.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.39808834 = fieldWeight in 4781, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Contemporary research in information science has concentrated on the development of methods for the algorithmic processing of natural language texts. Often, the equivalence of this approach to the intellectual technique of content analysis and indexing is claimed. It is, however, disregarded that contemporary intellectual techniques are far from exploiting their full capabilities. This is largely due to the omission of vocabulary categorisation. It is demonstrated how categorisation can drastically improve the quality of indexing and classification, and, hence, of retrieval
  17. Svenonius, E.: Unanswered questions in the design of controlled vocabularies (1997) 0.02
    0.015178238 = product of:
      0.030356476 = sum of:
        0.030356476 = product of:
          0.060712952 = sum of:
            0.060712952 = weight(_text_:classification in 583) [ClassicSimilarity], result of:
              0.060712952 = score(doc=583,freq=6.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.3656675 = fieldWeight in 583, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.046875 = fieldNorm(doc=583)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    From classification to 'knowledge organization': Dorking revisited or 'past is prelude'. A collection of reprints to commemorate the firty year span between the Dorking Conference (First International Study Conference on Classification Research 1957) and the Sixth International Study Conference on Classification Research (London 1997). Ed.: A. Gilchrist
  18. Fugmann, R.: ¬The complementarity of natural and controlled languages in indexing (1995) 0.01
    0.014605265 = product of:
      0.02921053 = sum of:
        0.02921053 = product of:
          0.05842106 = sum of:
            0.05842106 = weight(_text_:classification in 1634) [ClassicSimilarity], result of:
              0.05842106 = score(doc=1634,freq=2.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.35186368 = fieldWeight in 1634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1634)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Subject indexing: principles and practices in the 90's. Proceedings of the IFLA Satellite Meeting Held in Lisbon, Portugal, 17-18 August 1993, and sponsored by the IFLA Section on Classification and Indexing and the Instituto da Biblioteca Nacional e do Livro, Lisbon, Portugal. Ed.: R.P. Holley et al
  19. Farradane, J.E.L.: Fundamental fallacies and new needs in classification (1985) 0.01
    0.013855773 = product of:
      0.027711546 = sum of:
        0.027711546 = product of:
          0.055423092 = sum of:
            0.055423092 = weight(_text_:classification in 3642) [ClassicSimilarity], result of:
              0.055423092 = score(doc=3642,freq=20.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.33380723 = fieldWeight in 3642, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3642)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter from The Sayers Memorial Volume summarizes Farradane's earlier work in which he developed his major themes by drawing in part upon research in psychology, and particularly those discoveries called "cognitive" which now form part of cognitive science. Farradane, a chemist by training who later became an information scientist and Director of the Center for Information Science, City University, London, from 1958 to 1973, defines the various types of methods used to achieve classification systems-philosophic, scientific, and synthetic. Early an he distinguishes the view that classification is "some part of external 'reality' waiting to be discovered" from that view which considers it "an intellectual operation upon mental entities and concepts." Classification, therefore, is to be treated as a mental construct and not as something "out there" to be discovered as, say, in astronomy or botany. His approach could be termed, somewhat facetiously, as an "in there" one, meaning found by utilizing the human brain as the key tool. This is not to say that discoveries in astronomy or botany do not require the use of the brain as a key tool. It is merely that the "material" worked upon by this tool is presented to it for observation by "that inward eye," by memory and by inference rather than by planned physical observation, memory, and inference. This distinction could be refined or clarified by considering the initial "observation" as a specific kind of mental set required in each case. Farradane then proceeds to demolish the notion of main classes as "fictitious," partly because the various category-defining methodologies used in library classification are "randomly mixed." The implication, probably correct, is that this results in mixed metaphorical concepts. It is an interesting contrast to the approach of Julia Pettee (q.v.), who began with indexing terms and, in studying relationships between terms, discovered hidden hierarchies both between the terms themselves and between the cross-references leading from one term or set of terms to another. One is tempted to ask two questions: "Is hierarchy innate but misinterpreted?" and "ls it possible to have meaningful terms which have only categorical relationships (that have no see also or equivalent relationships to other, out-of-category terms)?" Partly as a result of the rejection of existing general library classification systems, the Classification Research Group-of which Farradane was a charter member decided to adopt the principles of Ranganathan's faceted classification system, while rejecting his limit an the number of fundamental categories. The advantage of the faceted method is that it is created by inductive, rather than deductive, methods. It can be altered more readily to keep up with changes in and additions to the knowledge base in a subject without having to re-do the major schedules. In 1961, when Farradane's paper appeared, the computer was beginning to be viewed as a tool for solving all information retrieval problems. He tartly remarks:
    The basic fallacy of mechanised information retrieval systems seems to be the often unconscious but apparently implied assumption that the machine can inject meaning into a group of juxtaposed terms although no methods of conceptual analysis and re-synthesis have been programmed (p. 203). As an example, he suggests considering the slight but vital differences in the meaning of the word "of" in selected examples: swarm of bees house of the mayor House of Lords spectrum of the sun basket of fish meeting of councillors cooking of meat book of the film Farradane's distinctive contribution is his matrix of basic relationships. The rows concern time and memory, in degree of happenstance: coincidentally, occasionally, or always. The columns represent degree of the "powers of discrimination": occurring together, linked by common elements only, or standing alone. To make these relationships easily managed, he used symbols for each of the nine kinds - "symbols found an every typewriter": /O (Theta) /* /; /= /+ /( /) /_ /: Farradane has maintained his basic insights to the present day. Though he has gone an to do other kinds of research in classification, his work indicates that he still believes that "the primary task ... is that of establishing satisfactory and enduring principles of subject analysis, or classification" (p. 208).
  20. Foskett, D.J.: Classification and integrative levels (1985) 0.01
    0.0135246655 = product of:
      0.027049331 = sum of:
        0.027049331 = product of:
          0.054098662 = sum of:
            0.054098662 = weight(_text_:classification in 3639) [ClassicSimilarity], result of:
              0.054098662 = score(doc=3639,freq=14.0), product of:
                0.16603322 = queryWeight, product of:
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.05213454 = queryNorm
                0.32583034 = fieldWeight in 3639, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.1847067 = idf(docFreq=4974, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3639)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Very interesting experimental work was done by Douglas Foskett and other British classificationists during the fifteen-year period following the end of World War II. The research was effective in demonstrating that it was possible to make very sophisticated classification systems for virtually any subject-systems suitable for experts and for the general user needing a detailed subject classification. The success of these special systems led to consideration of the possibility of putting them together to form a new general classification system. To do such a thing would require a general, overall framework of some kind, since systems limited to a special subject are easier to construct because one does not have to worry about including all of the pertinent facets needed for a general system. Individual subject classifications do not automatically coalesce into a general pattern. For example, what is central to one special classification might be fringe in another or in several others. Fringe terminologies may not coincide in terms of logical relationships. Homographs and homonyms may not rear their ugly heads until attempts at merger are made. Foskett points out that even identifying a thing in terms of a noun or verb involves different assumptions in approach. For these and other reasons, it made sense to look for existing work in fields where the necessary framework already existed. Foskett found the rudiments of such a system in a number of writings, culminating in a logical system called "integrative levels" suggested by James K. Feibleman (q.v.). This system consists of a set of advancing conceptual levels relating to the apparent organization of nature. These levels are irreversible in that if one once reached a certain level there was no going back. Foskett points out that with higher levels and greater complexity in structure the analysis needed to establish valid levels becomes much more difficult, especially as Feibleman stipulates that a higher level must not be reducible to a lower one. (That is, one cannot put Humpty Dumpty together again.) Foskett is optimistic to the extent of suggesting that references from level to level be made upwards, with inductive reasoning, a system used by Derek Austin (q.v.) for making reference structures in PRECIS. Though the method of integrative levels so far has not been used successfully with the byproducts of human social behavior and thought, so much has been learned about these areas during the past twenty years that Foskett may yet be correct in his optimism. Foskett's name has Jong been associated with classification in the social sciences. As with many of the British classificationists included in this book, he has been a member of the Classification Research Group for about forty years. Like the others, he continues to contribute to the field.

Languages

  • e 40
  • d 2
  • f 2
  • More… Less…

Types

  • a 36
  • m 5
  • s 5
  • el 2
  • r 1
  • More… Less…