Search (17 results, page 1 of 1)

  • × author_ss:"Ding, Y."
  1. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.14
    0.1425575 = product of:
      0.21383624 = sum of:
        0.1901276 = weight(_text_:citation in 4188) [ClassicSimilarity], result of:
          0.1901276 = score(doc=4188,freq=10.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.8109515 = fieldWeight in 4188, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4188)
        0.023708638 = product of:
          0.047417276 = sum of:
            0.047417276 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.047417276 = score(doc=4188,freq=2.0), product of:
                0.1750808 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04999695 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Date
    22. 1.2011 13:02:21
  2. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.14
    0.14209752 = product of:
      0.21314627 = sum of:
        0.19282457 = weight(_text_:citation in 1521) [ClassicSimilarity], result of:
          0.19282457 = score(doc=1521,freq=14.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.82245487 = fieldWeight in 1521, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=1521)
        0.02032169 = product of:
          0.04064338 = sum of:
            0.04064338 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.04064338 = score(doc=1521,freq=2.0), product of:
                0.1750808 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04999695 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
    Theme
    Citation indexing
  3. Ni, C.; Shaw, D.; Lind, S.M.; Ding, Y.: Journal impact and proximity : an assessment using bibliographic features (2013) 0.07
    0.07099848 = product of:
      0.10649772 = sum of:
        0.072880834 = weight(_text_:citation in 686) [ClassicSimilarity], result of:
          0.072880834 = score(doc=686,freq=2.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.31085873 = fieldWeight in 686, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=686)
        0.033616886 = product of:
          0.06723377 = sum of:
            0.06723377 = weight(_text_:reports in 686) [ClassicSimilarity], result of:
              0.06723377 = score(doc=686,freq=2.0), product of:
                0.2251839 = queryWeight, product of:
                  4.503953 = idf(docFreq=1329, maxDocs=44218)
                  0.04999695 = queryNorm
                0.29857272 = fieldWeight in 686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.503953 = idf(docFreq=1329, maxDocs=44218)
                  0.046875 = fieldNorm(doc=686)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Journals in the Information Science & Library Science category of Journal Citation Reports (JCR) were compared using both bibliometric and bibliographic features. Data collected covered journal impact factor (JIF), number of issues per year, number of authors per article, longevity, editorial board membership, frequency of publication, number of databases indexing the journal, number of aggregators providing full-text access, country of publication, JCR categories, Dewey decimal classification, and journal statement of scope. Three features significantly correlated with JIF: number of editorial board members and number of JCR categories in which a journal is listed correlated positively; journal longevity correlated negatively with JIF. Coword analysis of journal descriptions provided a proximity clustering of journals, which differed considerably from the clusters based on editorial board membership. Finally, a multiple linear regression model was built to predict the JIF based on all the collected bibliographic features.
  4. Yan, E.; Ding, Y.: Weighted citation : an indicator of an article's prestige (2010) 0.06
    0.06478297 = product of:
      0.1943489 = sum of:
        0.1943489 = weight(_text_:citation in 3705) [ClassicSimilarity], result of:
          0.1943489 = score(doc=3705,freq=8.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.8289566 = fieldWeight in 3705, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0625 = fieldNorm(doc=3705)
      0.33333334 = coord(1/3)
    
    Abstract
    The authors propose using the technique of weighted citation to measure an article's prestige. The technique allocates a different weight to each reference by taking into account the impact of citing journals and citation time intervals. Weightedcitation captures prestige, whereas citation counts capture popularity. They compare the value variances for popularity and prestige for articles published in the Journal of the American Society for Information Science and Technology from 1998 to 2007, and find that the majority have comparable status.
  5. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.06
    0.06427486 = product of:
      0.19282457 = sum of:
        0.19282457 = weight(_text_:citation in 3161) [ClassicSimilarity], result of:
          0.19282457 = score(doc=3161,freq=14.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.82245487 = fieldWeight in 3161, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
  6. Zhang, G.; Ding, Y.; Milojevic, S.: Citation content analysis (CCA) : a framework for syntactic and semantic analysis of citation content (2013) 0.06
    0.06427486 = product of:
      0.19282457 = sum of:
        0.19282457 = weight(_text_:citation in 975) [ClassicSimilarity], result of:
          0.19282457 = score(doc=975,freq=14.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.82245487 = fieldWeight in 975, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=975)
      0.33333334 = coord(1/3)
    
    Abstract
    This study proposes a new framework for citation content analysis (CCA), for syntactic and semantic analysis of citation content that can be used to better analyze the rich sociocultural context of research behavior. This framework could be considered the next generation of citation analysis. The authors briefly review the history and features of content analysis in traditional social sciences and its previous application in library and information science (LIS). Based on critical discussion of the theoretical necessity of a new method as well as the limits of citation analysis, the nature and purposes of CCA are discussed, and potential procedures to conduct CCA, including principles to identify the reference scope, a two-dimensional (citing and cited) and two-module (syntactic and semantic) codebook, are provided and described. Future work and implications are also suggested.
    Theme
    Citation indexing
  7. Li, R.; Chambers, T.; Ding, Y.; Zhang, G.; Meng, L.: Patent citation analysis : calculating science linkage based on citing motivation (2014) 0.05
    0.05356238 = product of:
      0.16068713 = sum of:
        0.16068713 = weight(_text_:citation in 1257) [ClassicSimilarity], result of:
          0.16068713 = score(doc=1257,freq=14.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.685379 = fieldWeight in 1257, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1257)
      0.33333334 = coord(1/3)
    
    Abstract
    Science linkage is a widely used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy because the subject of patent citation behavior varies from inventors/applicants to examiners. In order to identify and ultimately reduce this noise, we analyzed the different citing motivations of examiners and inventors/applicants. We built 4 hypotheses based upon our study of patent law, the unique economic nature of a patent, and a patent citation's market effect. To test our hypotheses, we conducted an expert survey based on our science linkage calculation in the domain of catalyst from U.S. patent data (2006-2009) over 3 types of citations: self-citation by inventor/applicant, non-self-citation by inventor/applicant, and citation by examiner. According to our results, evaluated by domain experts, we conclude that the non-self-citation by inventor/applicant is quite noisy and cannot indicate science linkage and that self-citation by inventor/applicant, although limited, is more appropriate for understanding science linkage.
  8. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.05
    0.05356238 = product of:
      0.16068713 = sum of:
        0.16068713 = weight(_text_:citation in 4445) [ClassicSimilarity], result of:
          0.16068713 = score(doc=4445,freq=14.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.685379 = fieldWeight in 4445, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4445)
      0.33333334 = coord(1/3)
    
    Abstract
    Citations in scientific literature are important both for tracking the historical development of scientific ideas and for forecasting research trends. However, the diffusion mechanisms underlying the citation process remain poorly understood, despite the frequent and longstanding use of citation counts for assessment purposes within the scientific community. Here, we extend the study of citation dynamics to a more general diffusion process to understand how citation growth associates with different diffusion patterns. Using a classic diffusion model, we quantify and illustrate specific diffusion mechanisms which have been proven to exert a significant impact on the growth and decay of citation counts. Experiments reveal a positive relation between the "low p and low q" pattern and high scientific impact. A sharp citation peak produced by rapid change of citation counts, however, has a negative effect on future impact. In addition, we have suggested a simple indicator, saturation level, to roughly estimate an individual article's current stage in the life cycle and its potential to attract future attention. The proposed approach can also be extended to higher levels of aggregation (e.g., individual scientists, journals, institutions), providing further insights into the practice of scientific evaluation.
  9. Ding, Y.; Yan, E.: Scholarly network similarities : how bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other (2012) 0.05
    0.048587225 = product of:
      0.14576167 = sum of:
        0.14576167 = weight(_text_:citation in 274) [ClassicSimilarity], result of:
          0.14576167 = score(doc=274,freq=8.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.62171745 = fieldWeight in 274, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=274)
      0.33333334 = coord(1/3)
    
    Abstract
    This study explores the similarity among six types of scholarly networks aggregated at the institution level, including bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks. Cosine distance is chosen to measure the similarities among the six networks. The authors found that topical networks and coauthorship networks have the lowest similarity; cocitation networks and citation networks have high similarity; bibliographic coupling networks and cocitation networks have high similarity; and coword networks and topical networks have high similarity. In addition, through multidimensional scaling, two dimensions can be identified among the six networks: Dimension 1 can be interpreted as citation-based versus noncitation-based, and Dimension 2 can be interpreted as social versus cognitive. The authors recommend the use of hybrid or heterogeneous networks to study research interaction and scholarly communications.
  10. Yan, E.; Ding, Y.: Discovering author impact : a PageRank perspective (2011) 0.05
    0.045808475 = product of:
      0.13742542 = sum of:
        0.13742542 = weight(_text_:citation in 2704) [ClassicSimilarity], result of:
          0.13742542 = score(doc=2704,freq=4.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.58616084 = fieldWeight in 2704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0625 = fieldNorm(doc=2704)
      0.33333334 = coord(1/3)
    
    Abstract
    This article provides an alternative perspective for measuring author impact by applying PageRank algorithm to a coauthorship network. A weighted PageRank algorithm considering citation and coauthorship network topology is proposed. We test this algorithm under different damping factors by evaluating author impact in the informetrics research community. In addition, we also compare this weighted PageRank with the h-index, citation, and program committee (PC) membership of the International Society for Scientometrics and Informetrics (ISSI) conferences. Findings show that this weighted PageRank algorithm provides reliable results in measuring author impact.
  11. Huang, Y.; Bu, Y.; Ding, Y.; Lu, W.: From zero to one : a perspective on citing (2019) 0.04
    0.042077776 = product of:
      0.12623332 = sum of:
        0.12623332 = weight(_text_:citation in 5387) [ClassicSimilarity], result of:
          0.12623332 = score(doc=5387,freq=6.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.5384232 = fieldWeight in 5387, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=5387)
      0.33333334 = coord(1/3)
    
    Abstract
    This article investigates the lengths of time that publications with different numbers of citations take to receive their first citation (the beginning stage), and then compares the lengths of time to receive two or more citations after receiving the first citation (the accumulative stage) in the field of computer science. We find that in the beginning stage, that is, from zero to one citation, high-, medium-, and low-cited publications do not obviously exhibit different lengths of time. However, in the accumulative stage, that is, from one to N citations, highly cited publications begin to receive citations much more rapidly than medium- and low-cited publications. Moreover, as N increases, the difference in receiving new citations among high-, medium-, and low-cited publications increases quite significantly.
  12. Yan, E.; Ding, Y.; Sugimoto, C.R.: P-Rank: an indicator measuring prestige in heterogeneous scholarly networks (2011) 0.03
    0.034356356 = product of:
      0.10306907 = sum of:
        0.10306907 = weight(_text_:citation in 4349) [ClassicSimilarity], result of:
          0.10306907 = score(doc=4349,freq=4.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.4396206 = fieldWeight in 4349, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=4349)
      0.33333334 = coord(1/3)
    
    Abstract
    Ranking scientific productivity and prestige are often limited to homogeneous networks. These networks are unable to account for the multiple factors that constitute the scholarly communication and reward system. This study proposes a new informetric indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks containing articles, authors, and journals. P-Rank differentiates the weight of each citation based on its citing papers, citing journals, and citing authors. Articles from 16 representative library and information science journals are selected as the dataset. Principle Component Analysis is conducted to examine the relationship between P-Rank and other bibliometric indicators. We also compare the correlation and rank variances between citation counts and P-Rank scores. This work provides a new approach to examining prestige in scholarly communication networks in a more comprehensive and nuanced way.
  13. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.03
    0.034356356 = product of:
      0.10306907 = sum of:
        0.10306907 = weight(_text_:citation in 1202) [ClassicSimilarity], result of:
          0.10306907 = score(doc=1202,freq=4.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.4396206 = fieldWeight in 1202, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=1202)
      0.33333334 = coord(1/3)
    
    Abstract
    Bioinformatics is a fast-growing field based on the optimal use of "big data" gathered in genomic, proteomics, and functional genomics research. In this paper, we conduct a comprehensive and in-depth bibliometric analysis of the field of bioinformatics by extracting citation data from PubMed Central full-text. Citation data for the period 2000 to 2011, comprising 20,869 papers with 546,245 citations, was used to evaluate the productivity and influence of this emerging field. Four measures were used to identify productivity; most productive authors, most productive countries, most productive organizations, and most popular subject terms. Research impact was analyzed based on the measures of most cited papers, most cited authors, emerging stars, and leading organizations. Results show the overall trends between the periods 2000 to 2003 and 2004 to 2007 were dissimilar, while trends between the periods 2004 to 2007 and 2008 to 2011 were similar. In addition, the field of bioinformatics has undergone a significant shift, co-evolving with other biomedical disciplines.
  14. Zhai, Y; Ding, Y.; Wang, F.: Measuring the diffusion of an innovation : a citation analysis (2018) 0.03
    0.034356356 = product of:
      0.10306907 = sum of:
        0.10306907 = weight(_text_:citation in 4116) [ClassicSimilarity], result of:
          0.10306907 = score(doc=4116,freq=4.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.4396206 = fieldWeight in 4116, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=4116)
      0.33333334 = coord(1/3)
    
    Abstract
    Innovations transform our research traditions and become the driving force to advance individual, group, and social creativity. Meanwhile, interdisciplinary research is increasingly being promoted as a route to advance the complex challenges we face as a society. In this paper, we use Latent Dirichlet Allocation (LDA) citation as a proxy context for the diffusion of an innovation. With an analysis of topic evolution, we divide the diffusion process into five stages: testing and evaluation, implementation, improvement, extending, and fading. Through a correlation analysis of topic and subject, we show the application of LDA in different subjects. We also reveal the cross-boundary diffusion between different subjects based on the analysis of the interdisciplinary studies. The results show that as LDA is transferred into different areas, the adoption of each subject is relatively adjacent to those with similar research interests. Our findings further support researchers' understanding of the impact formation of innovation.
  15. Yan, E.; Ding, Y.: Applying centrality measures to impact analysis : a coauthorship network analysis (2009) 0.03
    0.028342549 = product of:
      0.08502764 = sum of:
        0.08502764 = weight(_text_:citation in 3083) [ClassicSimilarity], result of:
          0.08502764 = score(doc=3083,freq=2.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.3626685 = fieldWeight in 3083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3083)
      0.33333334 = coord(1/3)
    
    Abstract
    Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties with the aim of applying centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of 20 years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness centrality, betweenness centrality, degree centrality, and PageRank) for authors in this network. We find that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking and suggest that centrality measures can be useful indicators for impact analysis.
  16. Sugimoto, C.R.; Li, D.; Russell, T.G.; Finlay, S.C.; Ding, Y.: ¬The shifting sands of disciplinary development : analyzing North American Library and Information Science dissertations using latent Dirichlet allocation (2011) 0.02
    0.020244677 = product of:
      0.06073403 = sum of:
        0.06073403 = weight(_text_:citation in 4143) [ClassicSimilarity], result of:
          0.06073403 = score(doc=4143,freq=2.0), product of:
            0.23445003 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.04999695 = queryNorm
            0.25904894 = fieldWeight in 4143, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4143)
      0.33333334 = coord(1/3)
    
    Abstract
    This work identifies changes in dominant topics in library and information science (LIS) over time, by analyzing the 3,121 doctoral dissertations completed between 1930 and 2009 at North American Library and Information Science programs. The authors utilize latent Dirichlet allocation (LDA) to identify latent topics diachronically and to identify representative dissertations of those topics. The findings indicate that the main topics in LIS have changed substantially from those in the initial period (1930-1969) to the present (2000-2009). However, some themes occurred in multiple periods, representing core areas of the field: library history occurred in the first two periods; citation analysis in the second and third periods; and information-seeking behavior in the fourth and last period. Two topics occurred in three of the five periods: information retrieval and information use. One of the notable changes in the topics was the diminishing use of the word library (and related terms). This has implications for the provision of doctoral education in LIS. This work is compared to other earlier analyses and provides validation for the use of LDA in topic analysis of a discipline.
  17. Ding, Y.: Visualization of intellectual structure in information retrieval : author cocitation analysis (1998) 0.01
    0.013073232 = product of:
      0.039219696 = sum of:
        0.039219696 = product of:
          0.07843939 = sum of:
            0.07843939 = weight(_text_:reports in 2792) [ClassicSimilarity], result of:
              0.07843939 = score(doc=2792,freq=2.0), product of:
                0.2251839 = queryWeight, product of:
                  4.503953 = idf(docFreq=1329, maxDocs=44218)
                  0.04999695 = queryNorm
                0.34833482 = fieldWeight in 2792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.503953 = idf(docFreq=1329, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2792)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports results of a cocitation analysis study from the international retrieval research field from 1987 to 1997. Data was taken from Social SciSearch, via Dialog, and the top 40 authors were submitted to author cocitation analysis to yield the intellectual structure of information retrieval. The resulting multidimensional scaling map revealed: identifiable author groups for information retrieval; location of these groups with respect to each other; extend of centrality and peripherality of authors within groups, proximities of authors within groups and across group boundaries; and the meaning of the axes of the map. Factor analysis was used to reveal the extent of the authors' research areas and statistical routines included: ALSCAL; clustering analysis and factor analysis