Search (7 results, page 1 of 1)

  • × author_ss:"Kousha, K."
  1. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Why are coauthored academic articles more cited : higher quality or larger audience? (2023) 0.07
    0.07099311 = product of:
      0.10648966 = sum of:
        0.08966068 = weight(_text_:systematic in 995) [ClassicSimilarity], result of:
          0.08966068 = score(doc=995,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 995, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=995)
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 995) [ClassicSimilarity], result of:
              0.033657953 = score(doc=995,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=995)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Collaboration is encouraged because it is believed to improve academic research, supported by indirect evidence in the form of more coauthored articles being more cited. Nevertheless, this might not reflect quality but increased self-citations or the "audience effect": citations from increased awareness through multiple author networks. We address this with the first science wide investigation into whether author numbers associate with journal article quality, using expert peer quality judgments for 122,331 articles from the 2014-20 UK national assessment. Spearman correlations between author numbers and quality scores show moderately strong positive associations (0.2-0.4) in the health, life, and physical sciences, but weak or no positive associations in engineering and social sciences, with weak negative/positive or no associations in various arts and humanities, and a possible negative association for decision sciences. This gives the first systematic evidence that greater numbers of authors associates with higher quality journal articles in the majority of academia outside the arts and humanities, at least for the UK. Positive associations between team size and citation counts in areas with little association between team size and quality also show that audience effects or other nonquality factors account for the higher citation rates of coauthored articles in some fields.
    Date
    22. 6.2023 18:11:50
  2. Kousha, K.; Thelwall, M.: Google Scholar citations and Google Web/URL citations : a multi-discipline exploratory analysis (2007) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 337) [ClassicSimilarity], result of:
              0.04021717 = score(doc=337,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Theme
    Citation indexing
  3. Kousha, K.; Thelwall, M.: Google book search : citation analysis for social science and the humanities (2009) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 2946) [ClassicSimilarity], result of:
              0.04021717 = score(doc=2946,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 2946, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2946)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Theme
    Citation indexing
  4. Kousha, K.; Thelwall, M.; Rezaie, S.: Can the impact of scholarly images be assessed online? : an exploratory study using image identification technology (2010) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 3966) [ClassicSimilarity], result of:
              0.04021717 = score(doc=3966,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 3966, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3966)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The web contains a huge number of digital pictures. For scholars publishing such images it is important to know how well used their images are, but no method seems to have been developed for monitoring the value of academic images. In particular, can the impact of scientific or artistic images be assessed through identifying images copied or reused on the Internet? This article explores a case study of 260 NASA images to investigate whether the TinEye search engine could theoretically help to provide this information. The results show that the selected pictures had a median of 11 online copies each. However, a classification of 210 of these copies reveals that only 1.4% were explicitly used in academic publications, reflecting research impact, and the majority of the NASA pictures were used for informal scholarly (or educational) communication (37%). Additional analyses of world famous paintings and scientific images about pathology and molecular structures suggest that image contents are important for the type and extent of image use. Although it is reasonable to use statistics derived from TinEye for assessing image reuse value, the extent of its image indexing is not known.
  5. Thelwall, M.; Kousha, K.; Stuart, E.; Makita, M.; Abdoli, M.; Wilson, P.; Levitt, J.: In which fields are citations indicators of research quality? (2023) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 1033) [ClassicSimilarity], result of:
              0.04021717 = score(doc=1033,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 1033, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1033)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Theme
    Citation indexing
  6. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
              0.033657953 = score(doc=586,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
  7. Li, X.; Thelwall, M.; Kousha, K.: ¬The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication (2015) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 2593) [ClassicSimilarity], result of:
              0.033657953 = score(doc=2593,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 2593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2593)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22