Search (26 results, page 1 of 2)

  • × theme_ss:"Data Mining"
  1. Survey of text mining : clustering, classification, and retrieval (2004) 0.08
    0.07873234 = product of:
      0.11809851 = sum of:
        0.08966068 = weight(_text_:systematic in 804) [ClassicSimilarity], result of:
          0.08966068 = score(doc=804,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 804, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=804)
        0.028437834 = product of:
          0.05687567 = sum of:
            0.05687567 = weight(_text_:indexing in 804) [ClassicSimilarity], result of:
              0.05687567 = score(doc=804,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29905218 = fieldWeight in 804, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=804)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory. As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments. This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
  2. Qiu, X.Y.; Srinivasan, P.; Hu, Y.: Supervised learning models to predict firm performance with annual reports : an empirical study (2014) 0.05
    0.050719745 = product of:
      0.15215923 = sum of:
        0.15215923 = weight(_text_:systematic in 1205) [ClassicSimilarity], result of:
          0.15215923 = score(doc=1205,freq=4.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.5358256 = fieldWeight in 1205, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=1205)
      0.33333334 = coord(1/3)
    
    Abstract
    Text mining and machine learning methodologies have been applied toward knowledge discovery in several domains, such as biomedicine and business. Interestingly, in the business domain, the text mining and machine learning community has minimally explored company annual reports with their mandatory disclosures. In this study, we explore the question "How can annual reports be used to predict change in company performance from one year to the next?" from a text mining perspective. Our article contributes a systematic study of the potential of company mandatory disclosures using a computational viewpoint in the following aspects: (a) We characterize our research problem along distinct dimensions to gain a reasonably comprehensive understanding of the capacity of supervised learning methods in predicting change in company performance using annual reports, and (b) our findings from unbiased systematic experiments provide further evidence about the economic incentives faced by analysts in their stock recommendations and speculations on analysts having access to more information in producing earnings forecast.
  3. Kong, S.; Ye, F.; Feng, L.; Zhao, Z.: Towards the prediction problems of bursting hashtags on Twitter (2015) 0.04
    0.041841652 = product of:
      0.12552495 = sum of:
        0.12552495 = weight(_text_:systematic in 2338) [ClassicSimilarity], result of:
          0.12552495 = score(doc=2338,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.44203353 = fieldWeight in 2338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
      0.33333334 = coord(1/3)
    
    Abstract
    Hundreds of thousands of hashtags are generated every day on Twitter. Only a few will burst and become trending topics. In this article, we provide the definition of a bursting hashtag and conduct a systematic study of a series of challenging prediction problems that span the entire life cycles of bursting hashtags. Around the problem of "how to build a system to predict bursting hashtags," we explore different types of features and present machine learning solutions. On real data sets from Twitter, experiments are conducted to evaluate the effectiveness of the proposed solutions and the contributions of features.
  4. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.04
    0.039400067 = product of:
      0.1182002 = sum of:
        0.1182002 = sum of:
          0.064347476 = weight(_text_:indexing in 1270) [ClassicSimilarity], result of:
            0.064347476 = score(doc=1270,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.3383389 = fieldWeight in 1270, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.0625 = fieldNorm(doc=1270)
          0.053852726 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
            0.053852726 = score(doc=1270,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.30952093 = fieldWeight in 1270, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1270)
      0.33333334 = coord(1/3)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  5. Relational data mining (2001) 0.04
    0.03586427 = product of:
      0.10759281 = sum of:
        0.10759281 = weight(_text_:systematic in 1303) [ClassicSimilarity], result of:
          0.10759281 = score(doc=1303,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.3788859 = fieldWeight in 1303, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=1303)
      0.33333334 = coord(1/3)
    
    Abstract
    As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The ferst part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programmeng; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
  6. Fong, A.C.M.: Mining a Web citation database for document clustering (2002) 0.02
    0.018768014 = product of:
      0.05630404 = sum of:
        0.05630404 = product of:
          0.11260808 = sum of:
            0.11260808 = weight(_text_:indexing in 3940) [ClassicSimilarity], result of:
              0.11260808 = score(doc=3940,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5920931 = fieldWeight in 3940, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3940)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Theme
    Citation indexing
  7. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.02
    0.015707046 = product of:
      0.047121134 = sum of:
        0.047121134 = product of:
          0.09424227 = sum of:
            0.09424227 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.09424227 = score(doc=4577,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 4.2000 18:01:22
  8. KDD : techniques and applications (1998) 0.01
    0.0134631805 = product of:
      0.04038954 = sum of:
        0.04038954 = product of:
          0.08077908 = sum of:
            0.08077908 = weight(_text_:22 in 6783) [ClassicSimilarity], result of:
              0.08077908 = score(doc=6783,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.46428138 = fieldWeight in 6783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6783)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    A special issue of selected papers from the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'97), held Singapore, 22-23 Feb 1997
  9. Wang, F.L.; Yang, C.C.: Mining Web data for Chinese segmentation (2007) 0.01
    0.009479279 = product of:
      0.028437834 = sum of:
        0.028437834 = product of:
          0.05687567 = sum of:
            0.05687567 = weight(_text_:indexing in 604) [ClassicSimilarity], result of:
              0.05687567 = score(doc=604,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29905218 = fieldWeight in 604, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=604)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Modern information retrieval systems use keywords within documents as indexing terms for search of relevant documents. As Chinese is an ideographic character-based language, the words in the texts are not delimited by white spaces. Indexing of Chinese documents is impossible without a proper segmentation algorithm. Many Chinese segmentation algorithms have been proposed in the past. Traditional segmentation algorithms cannot operate without a large dictionary or a large corpus of training data. Nowadays, the Web has become the largest corpus that is ideal for Chinese segmentation. Although most search engines have problems in segmenting texts into proper words, they maintain huge databases of documents and frequencies of character sequences in the documents. Their databases are important potential resources for segmentation. In this paper, we propose a segmentation algorithm by mining Web data with the help of search engines. On the other hand, the Romanized pinyin of Chinese language indicates boundaries of words in the text. Our algorithm is the first to utilize the Romanized pinyin to segmentation. It is the first unified segmentation algorithm for the Chinese language from different geographical areas, and it is also domain independent because of the nature of the Web. Experiments have been conducted on the datasets of a recent Chinese segmentation competition. The results show that our algorithm outperforms the traditional algorithms in terms of precision and recall. Moreover, our algorithm can effectively deal with the problems of segmentation ambiguity, new word (unknown word) detection, and stop words.
  10. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.053852726 = score(doc=1737,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22.11.1998 18:57:22
  11. Lusti, M.: Data Warehousing and Data Mining : Eine Einführung in entscheidungsunterstützende Systeme (1999) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 4261) [ClassicSimilarity], result of:
              0.053852726 = score(doc=4261,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 4261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4261)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    17. 7.2002 19:22:06
  12. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.047121134 = score(doc=2908,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  13. Lackes, R.; Tillmanns, C.: Data Mining für die Unternehmenspraxis : Entscheidungshilfen und Fallstudien mit führenden Softwarelösungen (2006) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 1383) [ClassicSimilarity], result of:
              0.04038954 = score(doc=1383,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 1383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1383)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2008 14:46:06
  14. Shi, X.; Yang, C.C.: Mining related queries from Web search engine query logs using an improved association rule mining model (2007) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 597) [ClassicSimilarity], result of:
              0.04021717 = score(doc=597,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=597)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    With the overwhelming volume of information, the task of finding relevant information on a given topic on the Web is becoming increasingly difficult. Web search engines hence become one of the most popular solutions available on the Web. However, it has never been easy for novice users to organize and represent their information needs using simple queries. Users have to keep modifying their input queries until they get expected results. Therefore, it is often desirable for search engines to give suggestions on related queries to users. Besides, by identifying those related queries, search engines can potentially perform optimizations on their systems, such as query expansion and file indexing. In this work we propose a method that suggests a list of related queries given an initial input query. The related queries are based in the query log of previously submitted queries by human users, which can be identified using an enhanced model of association rules. Users can utilize the suggested related queries to tune or redirect the search process. Our method not only discovers the related queries, but also ranks them according to the degree of their relatedness. Unlike many other rival techniques, it also performs reasonably well on less frequent input queries.
  15. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 4019) [ClassicSimilarity], result of:
              0.04021717 = score(doc=4019,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 4019, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4019)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
  16. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.033657953 = score(doc=668,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2013 19:43:01
  17. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.033657953 = score(doc=1605,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  18. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.033657953 = score(doc=5011,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    7. 3.2019 16:32:22
  19. Chakrabarti, S.: Mining the Web : discovering knowledge from hypertext data (2003) 0.01
    0.00536229 = product of:
      0.016086869 = sum of:
        0.016086869 = product of:
          0.032173738 = sum of:
            0.032173738 = weight(_text_:indexing in 2222) [ClassicSimilarity], result of:
              0.032173738 = score(doc=2222,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.16916946 = fieldWeight in 2222, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2222)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    Rez. in: JASIST 55(2004) no.3, S.275-276 (C. Chen): "This is a book about finding significant statistical patterns on the Web - in particular, patterns that are associated with hypertext documents, topics, hyperlinks, and queries. The term pattern in this book refers to dependencies among such items. On the one hand, the Web contains useful information an just about every topic under the sun. On the other hand, just like searching for a needle in a haystack, one would need powerful tools to locate useful information an the vast land of the Web. Soumen Chakrabarti's book focuses an a wide range of techniques for machine learning and data mining an the Web. The goal of the book is to provide both the technical Background and tools and tricks of the trade of Web content mining. Much of the technical content reflects the state of the art between 1995 and 2002. The targeted audience is researchers and innovative developers in this area, as well as newcomers who intend to enter this area. The book begins with an introduction chapter. The introduction chapter explains fundamental concepts such as crawling and indexing as well as clustering and classification. The remaining eight chapters are organized into three parts: i) infrastructure, ii) learning and iii) applications.
  20. Schwartz, F.; Fang, Y.C.: Citation data analysis on hydrogeology (2007) 0.01
    0.00536229 = product of:
      0.016086869 = sum of:
        0.016086869 = product of:
          0.032173738 = sum of:
            0.032173738 = weight(_text_:indexing in 433) [ClassicSimilarity], result of:
              0.032173738 = score(doc=433,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.16916946 = fieldWeight in 433, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=433)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Theme
    Citation indexing

Languages

  • e 19
  • d 7

Types