Search (34 results, page 1 of 2)

  • × theme_ss:"Semantic Web"
  • × type_ss:"a"
  1. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.03
    0.03447506 = product of:
      0.103425175 = sum of:
        0.103425175 = sum of:
          0.05630404 = weight(_text_:indexing in 1026) [ClassicSimilarity], result of:
            0.05630404 = score(doc=1026,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.29604656 = fieldWeight in 1026, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1026)
          0.047121134 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
            0.047121134 = score(doc=1026,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.2708308 = fieldWeight in 1026, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=1026)
      0.33333334 = coord(1/3)
    
    Abstract
    We have created software applications that allow users to both author and use Semantic Web metadata. To create and use a layer of semantic content on top of the existing Web, we have (1) implemented a user interface that expedites the task of attributing metadata to resources on the Web, and (2) augmented a Web browser to leverage this semantic metadata to provide relevant information and tasks to the user. This project provides a framework for annotating and reorganizing existing files, pages, and sites on the Web that is similar to Vannevar Bushrsquos original concepts of trail blazing and associative indexing.
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  2. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.02
    0.019700034 = product of:
      0.0591001 = sum of:
        0.0591001 = sum of:
          0.032173738 = weight(_text_:indexing in 2656) [ClassicSimilarity], result of:
            0.032173738 = score(doc=2656,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.16916946 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
          0.026926363 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
            0.026926363 = score(doc=2656,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.15476047 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
      0.33333334 = coord(1/3)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.01
    0.013931636 = product of:
      0.041794907 = sum of:
        0.041794907 = product of:
          0.083589815 = sum of:
            0.083589815 = weight(_text_:indexing in 3829) [ClassicSimilarity], result of:
              0.083589815 = score(doc=3829,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.4395151 = fieldWeight in 3829, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
  4. Lassalle, E.; Lassalle, E.: Semantic models in information retrieval (2012) 0.01
    0.011609698 = product of:
      0.03482909 = sum of:
        0.03482909 = product of:
          0.06965818 = sum of:
            0.06965818 = weight(_text_:indexing in 97) [ClassicSimilarity], result of:
              0.06965818 = score(doc=97,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3662626 = fieldWeight in 97, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=97)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Robertson and Spärck Jones pioneered experimental probabilistic models (Binary Independence Model) with both a typology generalizing the Boolean model, a frequency counting to calculate elementary weightings, and their combination into a global probabilistic estimation. However, this model did not consider indexing terms dependencies. An extension to mixture models (e.g., using a 2-Poisson law) made it possible to take into account these dependencies from a macroscopic point of view (BM25), as well as a shallow linguistic processing of co-references. New approaches (language models, for example "bag of words" models, probabilistic dependencies between requests and documents, and consequently Bayesian inference using Dirichlet prior conjugate) furnished new solutions for documents structuring (categorization) and for index smoothing. Presently, in these probabilistic models the main issues have been addressed from a formal point of view only. Thus, linguistic properties are neglected in the indexing language. The authors examine how a linguistic and semantic modeling can be integrated in indexing languages and set up a hybrid model that makes it possible to deal with different information retrieval problems in a unified way.
  5. Svensson, L.G.: Unified access : a semantic Web based model for multilingual navigation in heterogeneous data sources (2008) 0.01
    0.011375135 = product of:
      0.034125403 = sum of:
        0.034125403 = product of:
          0.068250805 = sum of:
            0.068250805 = weight(_text_:indexing in 2191) [ClassicSimilarity], result of:
              0.068250805 = score(doc=2191,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3588626 = fieldWeight in 2191, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2191)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Most online library catalogues are not well equipped for subject search. On the one hand it is difficult to navigate the structures of the thesauri and classification systems used for indexing. Further, there is little or no support for the integration of crosswalks between different controlled vocabularies, so that a subject search query formulated using one controlled vocabulary will not find resources indexed with another knowledge organisation system even if there exists a crosswalk between them. In this paper we will look at SemanticWeb technologies and a prototype system leveraging those technologies in order to enhance the subject search possibilities in heterogeneously indexed repositories. Finally, we will have a brief look at different initiatives aimed at integrating library data into the SemanticWeb.
    Source
    New pespectives on subject indexing and classification: essays in honour of Magda Heiner-Freiling. Red.: K. Knull-Schlomann, u.a
  6. Papadakis, I. et al.: Highlighting timely information in libraries through social and semantic Web technologies (2016) 0.01
    0.011219318 = product of:
      0.033657953 = sum of:
        0.033657953 = product of:
          0.06731591 = sum of:
            0.06731591 = weight(_text_:22 in 2090) [ClassicSimilarity], result of:
              0.06731591 = score(doc=2090,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.38690117 = fieldWeight in 2090, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2090)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  7. Panzer, M.: Taxonomies as resources identification, location and access of a »Webified« Dewey (2008) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 5471) [ClassicSimilarity], result of:
              0.05630404 = score(doc=5471,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 5471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5471)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    New pespectives on subject indexing and classification: essays in honour of Magda Heiner-Freiling. Red.: K. Knull-Schlomann, u.a
  8. Kiryakov, A.; Popov, B.; Terziev, I.; Manov, D.; Ognyanoff, D.: Semantic annotation, indexing, and retrieval (2004) 0.01
    0.009287758 = product of:
      0.027863273 = sum of:
        0.027863273 = product of:
          0.055726547 = sum of:
            0.055726547 = weight(_text_:indexing in 700) [ClassicSimilarity], result of:
              0.055726547 = score(doc=700,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2930101 = fieldWeight in 700, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=700)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Semantic Web realization depends on the availability of a critical mass of metadata for the web content, associated with the respective formal knowledge about the world. We claim that the Semantic Web, at its current stage of development, is in a state of a critical need of metadata generation and usage schemata that are specific, well-defined and easy to understand. This paper introduces our vision for a holistic architecture for semantic annotation, indexing, and retrieval of documents with regard to extensive semantic repositories. A system (called KIM), implementing this concept, is presented in brief and it is used for the purposes of evaluation and demonstration. A particular schema for semantic annotation with respect to real-world entities is proposed. The underlying philosophy is that a practical semantic annotation is impossible without some particular knowledge modelling commitments. Our understanding is that a system for such semantic annotation should be based upon a simple model of real-world entity classes, complemented with extensive instance knowledge. To ensure the efficiency, ease of sharing, and reusability of the metadata, we introduce an upper-level ontology (of about 250 classes and 100 properties), which starts with some basic philosophical distinctions and then goes down to the most common entity types (people, companies, cities, etc.). Thus it encodes many of the domain-independent commonsense concepts and allows straightforward domain-specific extensions. On the basis of the ontology, a large-scale knowledge base of entity descriptions is bootstrapped, and further extended and maintained. Currently, the knowledge bases usually scales between 105 and 106 descriptions. Finally, this paper presents a semantically enhanced information extraction system, which provides automatic semantic annotation with references to classes in the ontology and to instances. The system has been running over a continuously growing document collection (currently about 0.5 million news articles), so it has been under constant testing and evaluation for some time now. On the basis of these semantic annotations, we perform semantic based indexing and retrieval where users can mix traditional information retrieval (IR) queries and ontology-based ones. We argue that such large-scale, fully automatic methods are essential for the transformation of the current largely textual web into a Semantic Web.
  9. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.053852726 = score(doc=3376,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    31. 7.2010 16:58:22
  10. Tennis, J.T.; Sutton, S.A.: Extending the Simple Knowledge Organization System for concept management in vocabulary development applications (2008) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 1337) [ClassicSimilarity], result of:
              0.048260607 = score(doc=1337,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 1337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1337)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, we describe the development of an extension to the Simple Knowledge Organization System (SKOS) to accommodate the needs of vocabulary development applications (VDA) managing metadata schemes and requiring close tracking of change to both those schemes and their member concepts. We take a neopragmatic epistemic stance in asserting the need for an entity in SKOS modeling to mediate between the abstract concept and the concrete scheme. While the SKOS model sufficiently describes entities for modeling the current state of a scheme in support of indexing and search on the Semantic Web, it lacks the expressive power to serve the needs of VDA needing to maintain scheme historical continuity. We demonstrate preliminarily that conceptualizations drawn from empirical work in modeling entities in the bibliographic universe, such as works, texts, and exemplars, can provide the basis for SKOS extension in ways that support more rigorous demands of capturing concept evolution in VDA.
  11. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 4704) [ClassicSimilarity], result of:
              0.048260607 = score(doc=4704,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 4704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
  12. Rüther, M.; Fock, J.; Schultz-Krutisch, T.; Bandholtz, T.: Classification and reference vocabulary in linked environment data (2011) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 4816) [ClassicSimilarity], result of:
              0.048260607 = score(doc=4816,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 4816, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4816)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Federal Environment Agency (UBA), Germany, has a long tradition in knowledge organization, using a library along with many Web-based information systems. The backbone of this information space is a classification system enhanced by a reference vocabulary which consists of a thesaurus, a gazetteer and a chronicle. Over the years, classification has increasingly been relegated to the background compared with the reference vocabulary indexing and full text search. Bibliographic items are no longer classified directly but tagged with thesaurus terms, with those terms being classified. Since 2010 we have been developing a linked data representation of this knowledge base. While we are linking bibliographic and observation data with the controlled vocabulary in a Resource Desrcription Framework (RDF) representation, the classification may be revisited as a powerful organization system by inference. This also raises questions about the quality and feasibility of an unambiguous classification of thesaurus terms.
  13. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.047121134 = score(doc=2640,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  14. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.047121134 = score(doc=4184,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2011 10:38:28
  15. Blumauer, A.; Pellegrini, T.: Semantic Web Revisited : Eine kurze Einführung in das Social Semantic Web (2009) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 4855) [ClassicSimilarity], result of:
              0.047121134 = score(doc=4855,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 4855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4855)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.3-22
  16. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.047121134 = score(doc=759,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    11. 5.2013 19:22:18
  17. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.04038954 = score(doc=2418,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  18. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.04038954 = score(doc=2556,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    30.12.2008 18:22:46
  19. Hooland, S. van; Verborgh, R.; Wilde, M. De; Hercher, J.; Mannens, E.; Wa, R.Van de: Evaluating the success of vocabulary reconciliation for cultural heritage collections (2013) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 662) [ClassicSimilarity], result of:
              0.04038954 = score(doc=662,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=662)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2013 19:29:20
  20. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.04038954 = score(doc=2024,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22

Languages

  • e 30
  • d 4

Types