Search (107 results, page 1 of 6)

  • × theme_ss:"Wissensrepräsentation"
  1. Kleineberg, M.: ¬The blind men and the elephant : towards an organization of epistemic contexts (2013) 0.08
    0.07873234 = product of:
      0.11809851 = sum of:
        0.08966068 = weight(_text_:systematic in 1074) [ClassicSimilarity], result of:
          0.08966068 = score(doc=1074,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 1074, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1074)
        0.028437834 = product of:
          0.05687567 = sum of:
            0.05687567 = weight(_text_:indexing in 1074) [ClassicSimilarity], result of:
              0.05687567 = score(doc=1074,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29905218 = fieldWeight in 1074, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1074)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In the last two decades of knowledge organization (KO) research, there has been an increasing interest in the context-dependent nature of human knowledge. Contextualism maintains that knowledge is not available in a neutral and objective way, but is always interwoven with the process of knowledge production and the prerequisites of the knower. As a first step towards a systematic organization of epistemic contexts, the concept of knowledge will be considered in its ontological (WHAT) and epistemological (WHO) including methodological (HOW) dimensions. In current KO research, however, either the contextualism is not fully implemented (classification-as-ontology) or the ambition for a context-transcending universal KOS seems to have been abandoned (classification-as-epistemology). Based on a combined ontology and epistemology it will be argued that a phenomena-based approach to KO as stipulated by the León Manifesto, for example, requires a revision of the underlying phenomenon concept as a relation between the known object (WHAT) and the knowing subject (WHO), which is constituted by the application of specific methods (HOW). While traditional subject indexing of documents often relies on the organizing principle "levels of being" (WHAT), for a future context indexing, two novel principles are proposed, namely "levels of knowing" (WHO) and "integral methodological pluralism" (HOW).
  2. Broughton, V.: Facet analysis as a tool for modelling subject domains and terminologies (2011) 0.07
    0.07317951 = product of:
      0.10976927 = sum of:
        0.08966068 = weight(_text_:systematic in 4826) [ClassicSimilarity], result of:
          0.08966068 = score(doc=4826,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 4826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4826)
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 4826) [ClassicSimilarity], result of:
              0.04021717 = score(doc=4826,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 4826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4826)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Facet analysis is proposed as a general theory of knowledge organization, with an associated methodology that may be applied to the development of terminology tools in a variety of contexts and formats. Faceted classifications originated as a means of representing complexity in semantic content that facilitates logical organization and effective retrieval in a physical environment. This is achieved through meticulous analysis of concepts, their structural and functional status (based on fundamental categories), and their inter-relationships. These features provide an excellent basis for the general conceptual modelling of domains, and for the generation of KOS other than systematic classifications. This is demonstrated by the adoption of a faceted approach to many web search and visualization tools, and by the emergence of a facet based methodology for the construction of thesauri. Current work on the Bliss Bibliographic Classification (Second Edition) is investigating the ways in which the full complexity of faceted structures may be represented through encoded data, capable of generating intellectually and mechanically compatible forms of indexing tools from a single source. It is suggested that a number of research questions relating to the Semantic Web could be tackled through the medium of facet analysis.
  3. Cui, H.: Competency evaluation of plant character ontologies against domain literature (2010) 0.07
    0.07099311 = product of:
      0.10648966 = sum of:
        0.08966068 = weight(_text_:systematic in 3466) [ClassicSimilarity], result of:
          0.08966068 = score(doc=3466,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 3466, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3466)
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 3466) [ClassicSimilarity], result of:
              0.033657953 = score(doc=3466,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 3466, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3466)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Specimen identification keys are still the most commonly created tools used by systematic biologists to access biodiversity information. Creating identification keys requires analyzing and synthesizing large amounts of information from specimens and their descriptions and is a very labor-intensive and time-consuming activity. Automating the generation of identification keys from text descriptions becomes a highly attractive text mining application in the biodiversity domain. Fine-grained semantic annotation of morphological descriptions of organisms is a necessary first step in generating keys from text. Machine-readable ontologies are needed in this process because most biological characters are only implied (i.e., not stated) in descriptions. The immediate question to ask is How well do existing ontologies support semantic annotation and automated key generation? With the intention to either select an existing ontology or develop a unified ontology based on existing ones, this paper evaluates the coverage, semantic consistency, and inter-ontology agreement of a biodiversity character ontology and three plant glossaries that may be turned into ontologies. The coverage and semantic consistency of the ontology/glossaries are checked against the authoritative domain literature, namely, Flora of North America and Flora of China. The evaluation results suggest that more work is needed to improve the coverage and interoperability of the ontology/glossaries. More concepts need to be added to the ontology/glossaries and careful work is needed to improve the semantic consistency. The method used in this paper to evaluate the ontology/glossaries can be used to propose new candidate concepts from the domain literature and suggest appropriate definitions.
    Date
    1. 6.2010 9:55:22
  4. Zhitomirsky-Geffet, M.; Avidan, G.: ¬A new framework for systematic analysis and classification of inconsistencies in multi-viewpoint ontologies (2021) 0.05
    0.050719745 = product of:
      0.15215923 = sum of:
        0.15215923 = weight(_text_:systematic in 589) [ClassicSimilarity], result of:
          0.15215923 = score(doc=589,freq=4.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.5358256 = fieldWeight in 589, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=589)
      0.33333334 = coord(1/3)
    
    Abstract
    Plurality of beliefs and theories in different knowledge domains calls for modelling multi-viewpoint ontologies and knowledge organization systems (KOS). A generic theoretical approach recently proposed for heterogeneity representation in KOS was linking each ontological statement to a specific validity scope to determine a set of conditions under which the statement is valid. However, the practical applicability of this approach has yet to be empirically assessed. In addition, there is still a need to investigate the types of inconsistencies that might arise in multi-viewpoint ontologies as well as their possible causes. This study proposes a new framework for systematic analysis and classification of inconsistencies in multi-viewpoint ontologies. The framework is based on eight generic logical structures of ontological statements. To test the validity of the proposed framework, two ontologies from different knowledge domains were examined. We found that only three of the eight structures led to inconsistencies in both ontologies, while the other two structures were always present in logically consistent statements. The study has practical implications for building diversified and personalized knowledge systems.
  5. Green, R.: Relationships in the Dewey Decimal Classification (DDC) : plan of study (2008) 0.05
    0.04781903 = product of:
      0.14345708 = sum of:
        0.14345708 = weight(_text_:systematic in 3397) [ClassicSimilarity], result of:
          0.14345708 = score(doc=3397,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.5051812 = fieldWeight in 3397, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0625 = fieldNorm(doc=3397)
      0.33333334 = coord(1/3)
    
    Abstract
    EPC Exhibit 129-36.1 presented intermediate results of a project to connect Relative Index terms to topics associated with classes and to determine if those Relative Index terms approximated the whole of the corresponding class or were in standing room in the class. The Relative Index project constitutes the first stage of a long(er)-term project to instill a more systematic treatment of relationships within the DDC. The present exhibit sets out a plan of study for that long-term project.
  6. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.05
    0.04563692 = product of:
      0.13691075 = sum of:
        0.13691075 = sum of:
          0.09652121 = weight(_text_:indexing in 987) [ClassicSimilarity], result of:
            0.09652121 = score(doc=987,freq=8.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.5075084 = fieldWeight in 987, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
          0.04038954 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
            0.04038954 = score(doc=987,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.23214069 = fieldWeight in 987, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
      0.33333334 = coord(1/3)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
    LCSH
    Indexing
    Subject
    Indexing
  7. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.04
    0.04454486 = product of:
      0.13363458 = sum of:
        0.13363458 = sum of:
          0.10670821 = weight(_text_:indexing in 4399) [ClassicSimilarity], result of:
            0.10670821 = score(doc=4399,freq=22.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.56107163 = fieldWeight in 4399, product of:
                4.690416 = tf(freq=22.0), with freq of:
                  22.0 = termFreq=22.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.03125 = fieldNorm(doc=4399)
          0.026926363 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
            0.026926363 = score(doc=4399,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.15476047 = fieldWeight in 4399, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=4399)
      0.33333334 = coord(1/3)
    
    Abstract
    Indexing plays a vital role in Information Retrieval. With the availability of huge volume of information, it has become necessary to index the information in such a way to make easier for the end users to find the information they want efficiently and accurately. Keyword-based indexing uses words as indexing terms. It is not capable of capturing the implicit relation among terms or the semantics of the words in the document. To eliminate this limitation, ontology-based indexing came into existence, which allows semantic based indexing to solve complex and indirect user queries. Ontologies are used for document indexing which allows semantic based information retrieval. Existing ontologies or the ones constructed from scratch are used presently for indexing. Constructing ontologies from scratch is a labor-intensive task and requires extensive domain knowledge whereas use of an existing ontology may leave some important concepts in documents un-annotated. Using multiple ontologies can overcome the problem of missing out concepts to a great extent, but it is difficult to manage (changes in ontologies over time by their developers) multiple ontologies and ontology heterogeneity also arises due to ontologies constructed by different ontology developers. One possible solution to managing multiple ontologies and build from scratch is to use modular ontologies for indexing.
    Modular ontologies are built in modular manner by combining modules from multiple relevant ontologies. Ontology heterogeneity also arises during modular ontology construction because multiple ontologies are being dealt with, during this process. Ontologies need to be aligned before using them for modular ontology construction. The existing approaches for ontology alignment compare all the concepts of each ontology to be aligned, hence not optimized in terms of time and search space utilization. A new indexing technique is proposed based on modular ontology. An efficient ontology alignment technique is proposed to solve the heterogeneity problem during the construction of modular ontology. Results are satisfactory as Precision and Recall are improved by (8%) and (10%) respectively. The value of Pearsons Correlation Coefficient for degree of similarity, time, search space requirement, precision and recall are close to 1 which shows that the results are significant. Further research can be carried out for using modular ontology based indexing technique for Multimedia Information Retrieval and Bio-Medical information retrieval.
    Date
    20. 1.2015 18:30:22
  8. Sinha, P.K.; Dutta, B.: ¬A systematic analysis of flood ontologies : a parametric approach (2020) 0.04
    0.042266455 = product of:
      0.12679936 = sum of:
        0.12679936 = weight(_text_:systematic in 5758) [ClassicSimilarity], result of:
          0.12679936 = score(doc=5758,freq=4.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.44652134 = fieldWeight in 5758, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5758)
      0.33333334 = coord(1/3)
    
    Abstract
    The article identifies the core literature available on flood ontologies and presents a review on these ontologies from various perspectives like its purpose, type, design methodologies, ontologies (re)used, and also their focus on specific flood disaster phases. The study was conducted in two stages: i) literature identification, where the systematic literature review methodology was employed; and, ii) ontological review, where the parametric approach was applied. The study resulted in a set of fourteen papers discussing the flood ontology (FO). The ontological review revealed that most of the flood ontologies were task ontologies, formal, modular, and used web ontology language (OWL) for their representation. The most (re)used ontologies were SWEET, SSN, Time, and Space. METHONTOLOGY was the preferred design methodology, and for evaluation, application-based or data-based approaches were preferred. The majority of the ontologies were built around the response phase of the disaster. The unavailability of the full ontologies somewhat restricted the current study as the structural ontology metrics are missing. But the scientific community, the developers, of flood disaster management systems can refer to this work for their research to see what is available in the literature on flood ontology and the other major domains essential in building the FO.
  9. Tramullas, J.; Garrido-Picazo, P.; Sánchez-Casabón, A.I.: Use of Wikipedia categories on information retrieval research : a brief review (2020) 0.04
    0.03586427 = product of:
      0.10759281 = sum of:
        0.10759281 = weight(_text_:systematic in 5365) [ClassicSimilarity], result of:
          0.10759281 = score(doc=5365,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.3788859 = fieldWeight in 5365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
      0.33333334 = coord(1/3)
    
    Abstract
    Wikipedia categories, a classification scheme built for organizing and describing Wikpedia articles, are being applied in computer science research. This paper adopts a systematic literature review approach, in order to identify different approaches and uses of Wikipedia categories in information retrieval research. Several types of work are identified, depending on the intrinsic study of the categories structure, or its use as a tool for the processing and analysis of other documentary corpus different to Wikipedia. Information retrieval is identified as one of the major areas of use, in particular its application in the refinement and improvement of search expressions, and the construction of textual corpus. However, the set of available works shows that in many cases research approaches applied and results obtained can be integrated into a comprehensive and inclusive concept of information retrieval.
  10. Park, J.-r.: Evolution of concept networks and implications for knowledge representation (2007) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 847) [ClassicSimilarity], result of:
          0.08966068 = score(doc=847,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 847, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=847)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to present descriptive characteristics of the historical development of concept networks. The linguistic principles, mechanisms and motivations behind the evolution of concept networks are discussed. Implications emanating from the idea of the historical development of concept networks are discussed in relation to knowledge representation and organization schemes. Design/methodology/approach - Natural language data including both speech and text are analyzed by examining discourse contexts in which a linguistic element such as a polysemy or homonym occurs. Linguistic literature on the historical development of concept networks is reviewed and analyzed. Findings - Semantic sense relations in concept networks can be captured in a systematic and regular manner. The mechanism and impetus behind the process of concept network development suggest that semantic senses in concept networks are closely intertwined with pragmatic contexts and discourse structure. The interrelation and permeability of the semantic senses of concept networks are captured on a continuum scale based on three linguistic parameters: concrete shared semantic sense; discourse and text structure; and contextualized pragmatic information. Research limitations/implications - Research findings signify the critical need for linking discourse structure and contextualized pragmatic information to knowledge representation and organization schemes. Originality/value - The idea of linguistic characteristics, principles, motivation and mechanisms underlying the evolution of concept networks provides theoretical ground for developing a model for integrating knowledge representation and organization schemes with discourse structure and contextualized pragmatic information.
  11. Hjoerland, B.: Semantics and knowledge organization (2007) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 1980) [ClassicSimilarity], result of:
          0.08966068 = score(doc=1980,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 1980, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
      0.33333334 = coord(1/3)
    
    Abstract
    The aim of this chapter is to demonstrate that semantic issues underlie all research questions within Library and Information Science (LIS, or, as hereafter, IS) and, in particular, the subfield known as Knowledge Organization (KO). Further, it seeks to show that semantics is a field influenced by conflicting views and discusses why it is important to argue for the most fruitful one of these. Moreover, the chapter demonstrates that IS has not yet addressed semantic problems in systematic fashion and examines why the field is very fragmented and without a proper theoretical basis. The focus here is on broad interdisciplinary issues and the long-term perspective. The theoretical problems involving semantics and concepts are very complicated. Therefore, this chapter starts by considering tools developed in KO for information retrieval (IR) as basically semantic tools. In this way, it establishes a specific IS focus on the relation between KO and semantics. It is well known that thesauri consist of a selection of concepts supplemented with information about their semantic relations (such as generic relations or "associative relations"). Some words in thesauri are "preferred terms" (descriptors), whereas others are "lead-in terms." The descriptors represent concepts. The difference between "a word" and "a concept" is that different words may have the same meaning and similar words may have different meanings, whereas one concept expresses one meaning.
  12. Broughton, V.: Language related problems in the construction of faceted terminologies and their automatic management (2008) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 2497) [ClassicSimilarity], result of:
          0.08966068 = score(doc=2497,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 2497, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
      0.33333334 = coord(1/3)
    
    Content
    The paper describes current work on the generation of a thesaurus format from the schedules of the Bliss Bibliographic Classification 2nd edition (BC2). The practical problems that occur in moving from a concept based approach to a terminological approach cluster around issues of vocabulary control that are not fully addressed in a systematic structure. These difficulties can be exacerbated within domains in the humanities because large numbers of culture specific terms may need to be accommodated in any thesaurus. The ways in which these problems can be resolved within the context of a semi-automated approach to the thesaurus generation have consequences for the management of classification data in the source vocabulary. The way in which the vocabulary is marked up for the purpose of machine manipulation is described, and some of the implications for editorial policy are discussed and examples given. The value of the classification notation as a language independent representation and mapping tool should not be sacrificed in such an exercise.
  13. Crystal, D.: Semantic targeting : past, present, and future (2010) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 3938) [ClassicSimilarity], result of:
          0.08966068 = score(doc=3938,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 3938, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3938)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - This paper seeks to explicate the notion of "semantics", especially as it is being used in the context of the internet in general and advertising in particular. Design/methodology/approach - The conception of semantics as it evolved within linguistics is placed in its historical context. In the field of online advertising, it shows the limitations of keyword-based approaches and those where a limited amount of context is taken into account (contextual advertising). A more sophisticated notion of semantic targeting is explained, in which the whole page is taken into account in arriving at a semantic categorization. This is achieved through a combination of lexicological analysis and a purpose-built semantic taxonomy. Findings - The combination of a lexical analysis (derived from a dictionary) and a taxonomy (derived from a general encyclopedia, and subsequently refined) resulted in the construction of a "sense engine", which was then applied to online advertising, Examples of the application illustrate how relevance and sensitivity (brand protection) of ad placement can be improved. Several areas of potential further application are outlined. Originality/value - This is the first systematic application of linguistics to provide a solution to the problem of inappropriate ad placement online.
  14. Kohne, J.: Ontology, its origins and its meaning in information icience (2014) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 3401) [ClassicSimilarity], result of:
          0.08966068 = score(doc=3401,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 3401, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3401)
      0.33333334 = coord(1/3)
    
    Abstract
    Ontology - in Aristotelian terms the science of being qua being - as a classical branch of philosophy describes the foundations of being in general. In this context, ontology is general metaphysics: the science of everything. Pursuing ontology means establishing some systematic order among the being, i.e. dividing things into categories or conceptual frameworks. Explaining the reasons why there are things or even anything, however, is part of what is called special metaphysics (theology, cosmology and psychology). If putting things into categories is the key issue of ontology, then general structures are its main level of analysis. To categorize things is to put them into a structural order. Such categorization of things enables one to understand what reality is about. If this is true, and characterizing the general structures of being is a reasonable access for us to reality, then two kinds of analysis of those structures are available: (i) realism and (ii) nominalism. In a realist (Aristotelian) ontology the general structures of being are understood as a kind of mirror reflecting things in their natural order. Those categories, as they are called in realism, then represent or show the structure of being. Ontological realism understands the relation between categories and being as a kind of correspondence or mapping which gives access to reality itself.
  15. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 5787) [ClassicSimilarity], result of:
          0.08966068 = score(doc=5787,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 5787, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5787)
      0.33333334 = coord(1/3)
    
    Abstract
    This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.
  16. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.03
    0.026304156 = product of:
      0.07891247 = sum of:
        0.07891247 = product of:
          0.2367374 = sum of:
            0.2367374 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.2367374 = score(doc=400,freq=2.0), product of:
                0.4212274 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049684696 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  17. Thenmalar, S.; Geetha, T.V.: Enhanced ontology-based indexing and searching (2014) 0.02
    0.024107099 = product of:
      0.072321296 = sum of:
        0.072321296 = sum of:
          0.04876073 = weight(_text_:indexing in 1633) [ClassicSimilarity], result of:
            0.04876073 = score(doc=1633,freq=6.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.25638384 = fieldWeight in 1633, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1633)
          0.023560567 = weight(_text_:22 in 1633) [ClassicSimilarity], result of:
            0.023560567 = score(doc=1633,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.1354154 = fieldWeight in 1633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=1633)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to improve the conceptual-based search by incorporating structural ontological information such as concepts and relations. Generally, Semantic-based information retrieval aims to identify relevant information based on the meanings of the query terms or on the context of the terms and the performance of semantic information retrieval is carried out through standard measures-precision and recall. Higher precision leads to the (meaningful) relevant documents obtained and lower recall leads to the less coverage of the concepts. Design/methodology/approach - In this paper, the authors enhance the existing ontology-based indexing proposed by Kohler et al., by incorporating sibling information to the index. The index designed by Kohler et al., contains only super and sub-concepts from the ontology. In addition, in our approach, we focus on two tasks; query expansion and ranking of the expanded queries, to improve the efficiency of the ontology-based search. The aforementioned tasks make use of ontological concepts, and relations existing between those concepts so as to obtain semantically more relevant search results for a given query. Findings - The proposed ontology-based indexing technique is investigated by analysing the coverage of concepts that are being populated in the index. Here, we introduce a new measure called index enhancement measure, to estimate the coverage of ontological concepts being indexed. We have evaluated the ontology-based search for the tourism domain with the tourism documents and tourism-specific ontology. The comparison of search results based on the use of ontology "with and without query expansion" is examined to estimate the efficiency of the proposed query expansion task. The ranking is compared with the ORank system to evaluate the performance of our ontology-based search. From these analyses, the ontology-based search results shows better recall when compared to the other concept-based search systems. The mean average precision of the ontology-based search is found to be 0.79 and the recall is found to be 0.65, the ORank system has the mean average precision of 0.62 and the recall is found to be 0.51, while the concept-based search has the mean average precision of 0.56 and the recall is found to be 0.42. Practical implications - When the concept is not present in the domain-specific ontology, the concept cannot be indexed. When the given query term is not available in the ontology then the term-based results are retrieved. Originality/value - In addition to super and sub-concepts, we incorporate the concepts present in same level (siblings) to the ontological index. The structural information from the ontology is determined for the query expansion. The ranking of the documents depends on the type of the query (single concept query, multiple concept queries and concept with relation queries) and the ontological relations that exists in the query and the documents. With this ontological structural information, the search results showed us better coverage of concepts with respect to the query.
    Date
    20. 1.2015 18:30:22
  18. Herre, H.: General Formal Ontology (GFO) : a foundational ontology for conceptual modelling (2010) 0.02
    0.023909515 = product of:
      0.07172854 = sum of:
        0.07172854 = weight(_text_:systematic in 771) [ClassicSimilarity], result of:
          0.07172854 = score(doc=771,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.2525906 = fieldWeight in 771, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.03125 = fieldNorm(doc=771)
      0.33333334 = coord(1/3)
    
    Abstract
    Research in ontology has in recent years become widespread in the field of information systems, in distinct areas of sciences, in business, in economy, and in industry. The importance of ontologies is increasingly recognized in fields diverse as in e-commerce, semantic web, enterprise, information integration, qualitative modelling of physical systems, natural language processing, knowledge engineering, and databases. Ontologies provide formal specifications and harmonized definitions of concepts used to represent knowledge of specific domains. An ontology supplies a unifying framework for communication and establishes the basis of the knowledge about a specific domain. The term ontology has two meanings, it denotes, on the one hand, a research area, on the other hand, a system of organized knowledge. A system of knowledge may exhibit various degrees of formality; in the strongest sense it is an axiomatized and formally represented theory. which is denoted throughout this paper by the term axiomatized ontology. We use the term formal ontology to name an area of research which is becoming a science similar as formal or mathematical logic. Formal ontology is an evolving science which is concerned with the systematic development of axiomatic theories describing forms, modes, and views of being of the world at different levels of abstraction and granularity. Formal ontology combines the methods of mathematical logic with principles of philosophy, but also with the methods of artificial intelligence and linguistics. At themost general level of abstraction, formal ontology is concerned with those categories that apply to every area of the world. The application of formal ontology to domains at different levels of generality yields knowledge systems which are called, according to the level of abstraction, Top Level Ontologies or Foundational Ontologies, Core Domain or Domain Ontologies. Top level or foundational ontologies apply to every area of the world, in contrast to the various Generic, Domain Core or Domain Ontologies, which are associated to more restricted fields of interest. A foundational ontology can serve as a unifying framework for representation and integration of knowledge and may support the communication and harmonisation of conceptual systems. The current paper presents an overview about the current stage of the foundational ontology GFO.
  19. Gödert, W.: ¬An ontology-based model for indexing and retrieval (2013) 0.02
    0.02144916 = product of:
      0.064347476 = sum of:
        0.064347476 = product of:
          0.12869495 = sum of:
            0.12869495 = weight(_text_:indexing in 1510) [ClassicSimilarity], result of:
              0.12869495 = score(doc=1510,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.6766778 = fieldWeight in 1510, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1510)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Starting from an unsolved problem of information retrieval this paper presents an ontology-based model for indexing and retrieval. The model combines the methods and experiences of cognitive-to-interpret indexing languages with the strengths and possibilities of formal knowledge representation. The core component of the model uses inferences along the paths of typed relations between the entities of a knowledge representation for enabling the determination of hit quantities in the context of retrieval processes. The entities are arranged in aspect-oriented facets to ensure a consistent hierarchical structure. The possible consequences for indexing and retrieval are discussed.
  20. Gödert, W.: ¬An ontology-based model for indexing and retrieval (2016) 0.02
    0.018768014 = product of:
      0.05630404 = sum of:
        0.05630404 = product of:
          0.11260808 = sum of:
            0.11260808 = weight(_text_:indexing in 2777) [ClassicSimilarity], result of:
              0.11260808 = score(doc=2777,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5920931 = fieldWeight in 2777, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2777)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The presented ontology-based model for indexing and retrieval combines the methods and experiences of traditional indexing languages with their cognitively interpreted entities and relationships with the strengths and possibilities of formal knowledge representation. The core component of the model uses inferences along the paths of typed relations between the entities of a knowledge representation for enabling the determination of result sets in the context of retrieval processes. A proposal for a general, but condensed, inventory of typed relations is given. The entities are arranged in aspect-oriented facets to ensure a consistent hierarchical structure. The possible consequences for indexing and retrieval are discussed.

Authors

Years

Languages

  • e 92
  • d 12
  • f 1
  • More… Less…

Types

  • a 80
  • el 23
  • x 9
  • m 4
  • n 3
  • p 3
  • r 1
  • More… Less…