Search (4 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × author_ss:"Gödert, W."
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.05
    0.04563692 = product of:
      0.13691075 = sum of:
        0.13691075 = sum of:
          0.09652121 = weight(_text_:indexing in 987) [ClassicSimilarity], result of:
            0.09652121 = score(doc=987,freq=8.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.5075084 = fieldWeight in 987, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
          0.04038954 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
            0.04038954 = score(doc=987,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.23214069 = fieldWeight in 987, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
      0.33333334 = coord(1/3)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
    LCSH
    Indexing
    Subject
    Indexing
  2. Gödert, W.: ¬An ontology-based model for indexing and retrieval (2013) 0.02
    0.02144916 = product of:
      0.064347476 = sum of:
        0.064347476 = product of:
          0.12869495 = sum of:
            0.12869495 = weight(_text_:indexing in 1510) [ClassicSimilarity], result of:
              0.12869495 = score(doc=1510,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.6766778 = fieldWeight in 1510, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1510)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Starting from an unsolved problem of information retrieval this paper presents an ontology-based model for indexing and retrieval. The model combines the methods and experiences of cognitive-to-interpret indexing languages with the strengths and possibilities of formal knowledge representation. The core component of the model uses inferences along the paths of typed relations between the entities of a knowledge representation for enabling the determination of hit quantities in the context of retrieval processes. The entities are arranged in aspect-oriented facets to ensure a consistent hierarchical structure. The possible consequences for indexing and retrieval are discussed.
  3. Gödert, W.: ¬An ontology-based model for indexing and retrieval (2016) 0.02
    0.018768014 = product of:
      0.05630404 = sum of:
        0.05630404 = product of:
          0.11260808 = sum of:
            0.11260808 = weight(_text_:indexing in 2777) [ClassicSimilarity], result of:
              0.11260808 = score(doc=2777,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5920931 = fieldWeight in 2777, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2777)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The presented ontology-based model for indexing and retrieval combines the methods and experiences of traditional indexing languages with their cognitively interpreted entities and relationships with the strengths and possibilities of formal knowledge representation. The core component of the model uses inferences along the paths of typed relations between the entities of a knowledge representation for enabling the determination of result sets in the context of retrieval processes. A proposal for a general, but condensed, inventory of typed relations is given. The entities are arranged in aspect-oriented facets to ensure a consistent hierarchical structure. The possible consequences for indexing and retrieval are discussed.
  4. Boteram, F.; Gödert, W.; Hubrich, J.: Semantic interoperability and retrieval paradigms (2010) 0.01
    0.01072458 = product of:
      0.032173738 = sum of:
        0.032173738 = product of:
          0.064347476 = sum of:
            0.064347476 = weight(_text_:indexing in 3362) [ClassicSimilarity], result of:
              0.064347476 = score(doc=3362,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3383389 = fieldWeight in 3362, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3362)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper presents a new approach to understanding how indexing strategies, models for interoperability and retrieval paradigms interact in information systems and how this can be used to support the design and implementation of components of a semantic navigation for information retrieval systems.