Search (7 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[2020 TO 2030}
  1. Zhitomirsky-Geffet, M.; Avidan, G.: ¬A new framework for systematic analysis and classification of inconsistencies in multi-viewpoint ontologies (2021) 0.05
    0.050719745 = product of:
      0.15215923 = sum of:
        0.15215923 = weight(_text_:systematic in 589) [ClassicSimilarity], result of:
          0.15215923 = score(doc=589,freq=4.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.5358256 = fieldWeight in 589, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=589)
      0.33333334 = coord(1/3)
    
    Abstract
    Plurality of beliefs and theories in different knowledge domains calls for modelling multi-viewpoint ontologies and knowledge organization systems (KOS). A generic theoretical approach recently proposed for heterogeneity representation in KOS was linking each ontological statement to a specific validity scope to determine a set of conditions under which the statement is valid. However, the practical applicability of this approach has yet to be empirically assessed. In addition, there is still a need to investigate the types of inconsistencies that might arise in multi-viewpoint ontologies as well as their possible causes. This study proposes a new framework for systematic analysis and classification of inconsistencies in multi-viewpoint ontologies. The framework is based on eight generic logical structures of ontological statements. To test the validity of the proposed framework, two ontologies from different knowledge domains were examined. We found that only three of the eight structures led to inconsistencies in both ontologies, while the other two structures were always present in logically consistent statements. The study has practical implications for building diversified and personalized knowledge systems.
  2. Sinha, P.K.; Dutta, B.: ¬A systematic analysis of flood ontologies : a parametric approach (2020) 0.04
    0.042266455 = product of:
      0.12679936 = sum of:
        0.12679936 = weight(_text_:systematic in 5758) [ClassicSimilarity], result of:
          0.12679936 = score(doc=5758,freq=4.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.44652134 = fieldWeight in 5758, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5758)
      0.33333334 = coord(1/3)
    
    Abstract
    The article identifies the core literature available on flood ontologies and presents a review on these ontologies from various perspectives like its purpose, type, design methodologies, ontologies (re)used, and also their focus on specific flood disaster phases. The study was conducted in two stages: i) literature identification, where the systematic literature review methodology was employed; and, ii) ontological review, where the parametric approach was applied. The study resulted in a set of fourteen papers discussing the flood ontology (FO). The ontological review revealed that most of the flood ontologies were task ontologies, formal, modular, and used web ontology language (OWL) for their representation. The most (re)used ontologies were SWEET, SSN, Time, and Space. METHONTOLOGY was the preferred design methodology, and for evaluation, application-based or data-based approaches were preferred. The majority of the ontologies were built around the response phase of the disaster. The unavailability of the full ontologies somewhat restricted the current study as the structural ontology metrics are missing. But the scientific community, the developers, of flood disaster management systems can refer to this work for their research to see what is available in the literature on flood ontology and the other major domains essential in building the FO.
  3. Tramullas, J.; Garrido-Picazo, P.; Sánchez-Casabón, A.I.: Use of Wikipedia categories on information retrieval research : a brief review (2020) 0.04
    0.03586427 = product of:
      0.10759281 = sum of:
        0.10759281 = weight(_text_:systematic in 5365) [ClassicSimilarity], result of:
          0.10759281 = score(doc=5365,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.3788859 = fieldWeight in 5365, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=5365)
      0.33333334 = coord(1/3)
    
    Abstract
    Wikipedia categories, a classification scheme built for organizing and describing Wikpedia articles, are being applied in computer science research. This paper adopts a systematic literature review approach, in order to identify different approaches and uses of Wikipedia categories in information retrieval research. Several types of work are identified, depending on the intrinsic study of the categories structure, or its use as a tool for the processing and analysis of other documentary corpus different to Wikipedia. Information retrieval is identified as one of the major areas of use, in particular its application in the refinement and improvement of search expressions, and the construction of textual corpus. However, the set of available works shows that in many cases research approaches applied and results obtained can be integrated into a comprehensive and inclusive concept of information retrieval.
  4. Peponakis, M.; Mastora, A.; Kapidakis, S.; Doerr, M.: Expressiveness and machine processability of Knowledge Organization Systems (KOS) : an analysis of concepts and relations (2020) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 5787) [ClassicSimilarity], result of:
          0.08966068 = score(doc=5787,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 5787, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5787)
      0.33333334 = coord(1/3)
    
    Abstract
    This study considers the expressiveness (that is the expressive power or expressivity) of different types of Knowledge Organization Systems (KOS) and discusses its potential to be machine-processable in the context of the Semantic Web. For this purpose, the theoretical foundations of KOS are reviewed based on conceptualizations introduced by the Functional Requirements for Subject Authority Data (FRSAD) and the Simple Knowledge Organization System (SKOS); natural language processing techniques are also implemented. Applying a comparative analysis, the dataset comprises a thesaurus (Eurovoc), a subject headings system (LCSH) and a classification scheme (DDC). These are compared with an ontology (CIDOC-CRM) by focusing on how they define and handle concepts and relations. It was observed that LCSH and DDC focus on the formalism of character strings (nomens) rather than on the modelling of semantics; their definition of what constitutes a concept is quite fuzzy, and they comprise a large number of complex concepts. By contrast, thesauri have a coherent definition of what constitutes a concept, and apply a systematic approach to the modelling of relations. Ontologies explicitly define diverse types of relations, and are by their nature machine-processable. The paper concludes that the potential of both the expressiveness and machine processability of each KOS is extensively regulated by its structural rules. It is harder to represent subject headings and classification schemes as semantic networks with nodes and arcs, while thesauri are more suitable for such a representation. In addition, a paradigm shift is revealed which focuses on the modelling of relations between concepts, rather than the concepts themselves.
  5. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.053852726 = score(doc=318,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 5.2021 12:43:05
  6. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
              0.033657953 = score(doc=106,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 106, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2021 14:24:32
  7. Hocker, J.; Schindler, C.; Rittberger, M.: Participatory design for ontologies : a case study of an open science ontology for qualitative coding schemas (2020) 0.00
    0.0044877273 = product of:
      0.013463181 = sum of:
        0.013463181 = product of:
          0.026926363 = sum of:
            0.026926363 = weight(_text_:22 in 179) [ClassicSimilarity], result of:
              0.026926363 = score(doc=179,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.15476047 = fieldWeight in 179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=179)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22