Search (35 results, page 1 of 2)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Semantische Interoperabilität"
  1. Euzenat, J.; Shvaiko, P.: Ontology matching (2010) 0.06
    0.056794487 = product of:
      0.08519173 = sum of:
        0.07172854 = weight(_text_:systematic in 168) [ClassicSimilarity], result of:
          0.07172854 = score(doc=168,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.2525906 = fieldWeight in 168, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.013463181 = product of:
          0.026926363 = sum of:
            0.026926363 = weight(_text_:22 in 168) [ClassicSimilarity], result of:
              0.026926363 = score(doc=168,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.15476047 = fieldWeight in 168, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=168)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Ontologies are viewed as the silver bullet for many applications, but in open or evolving systems, different parties can adopt different ontologies. This increases heterogeneity problems rather than reducing heterogeneity. This book proposes ontology matching as a solution to the problem of semantic heterogeneity, offering researchers and practitioners a uniform framework of reference to currently available work. The techniques presented apply to database schema matching, catalog integration, XML schema matching and more. Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaiko's book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, artificial intelligence. With Ontology Matching, researchers and practitioners will find a reference book which presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can equally be applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a detailed account of matching techniques and matching systems in a systematic way from theoretical, practical and application perspectives.
    Date
    20. 6.2012 19:08:22
  2. Lumsden, J.; Hall, H.; Cruickshank, P.: Ontology definition and construction, and epistemological adequacy for systems interoperability : a practitioner analysis (2011) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 4801) [ClassicSimilarity], result of:
          0.08966068 = score(doc=4801,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 4801, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4801)
      0.33333334 = coord(1/3)
    
    Abstract
    Ontology development is considered to be a useful approach to the design and implementation of interoperable systems. This literature review and commentary examines the current state of knowledge in this field with particular reference to processes involved in assuring epistemological adequacy. It takes the perspective of the information systems practitioner keen to adopt a systematic approach to in-house ontology design, taking into consideration previously published work. The study arises from author involvement in an integration/interoperability project on systems that support Scottish Common Housing Registers in which, ultimately, ontological modelling was not deployed. Issues concerning the agreement of meaning, and the implications for the creation of interoperable systems, are discussed. The extent to which those theories, methods and frameworks provide practitioners with a usable set of tools is explored, and examples of practical applications of ontological modelling are noted. The findings from the review of the literature demonstrate a number of difficulties faced by information systems practitioners keen to develop and deploy domain ontologies. A major problem is deciding which broad approach to take: to rely on automatic ontology construction techniques, or to rely on key words and domain experts to develop ontologies.
  3. Euzenat, J.; Meilicke, C.; Stuckenschmidt, H.; Shvaiko, P.; Trojahn, C.: Ontology alignment evaluation initiative : six years of experience (2011) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 161) [ClassicSimilarity], result of:
          0.08966068 = score(doc=161,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 161, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=161)
      0.33333334 = coord(1/3)
    
    Abstract
    In the area of semantic technologies, benchmarking and systematic evaluation is not yet as established as in other areas of computer science, e.g., information retrieval. In spite of successful attempts, more effort and experience are required in order to achieve such a level of maturity. In this paper, we report results and lessons learned from the Ontology Alignment Evaluation Initiative (OAEI), a benchmarking initiative for ontology matching. The goal of this work is twofold: on the one hand, we document the state of the art in evaluating ontology matching methods and provide potential participants of the initiative with a better understanding of the design and the underlying principles of the OAEI campaigns. On the other hand, we report experiences gained in this particular area of semantic technologies to potential developers of benchmarking for other kinds of systems. For this purpose, we describe the evaluation design used in the OAEI campaigns in terms of datasets, evaluation criteria and workflows, provide a global view on the results of the campaigns carried out from 2005 to 2010 and discuss upcoming trends, both specific to ontology matching and generally relevant for the evaluation of semantic technologies. Finally, we argue that there is a need for a further automation of benchmarking to shorten the feedback cycle for tool developers.
  4. Boteram, F.; Hubrich, J.: Specifying intersystem relations : requirements, strategies, and issues (2010) 0.03
    0.029550051 = product of:
      0.08865015 = sum of:
        0.08865015 = sum of:
          0.048260607 = weight(_text_:indexing in 3691) [ClassicSimilarity], result of:
            0.048260607 = score(doc=3691,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.2537542 = fieldWeight in 3691, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.046875 = fieldNorm(doc=3691)
          0.04038954 = weight(_text_:22 in 3691) [ClassicSimilarity], result of:
            0.04038954 = score(doc=3691,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.23214069 = fieldWeight in 3691, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3691)
      0.33333334 = coord(1/3)
    
    Abstract
    Ideally, intersystem relations complement highly expressive and thoroughly structured relational indexing languages. The relational structures of the participating systems contribute to the meaning of the individual terms or classes. When conceptualizing mapping relations the structural and functional design of the respective systems must be fully taken into account. As intersystem relations may differ considerably from familiar interconcept relations, the creation of an adequate inventory that is general in coverage and specific in depth demands a deep understanding of the requirements and properties of mapping relations. The characteristics of specific mapping relations largely rely on the characteristics of the systems they are intended to connect. The detailed declaration of differences and peculiarities of specific mapping relations is an important prerequisite for modelling these relations. First approaches towards specifying
    Date
    22. 7.2010 17:11:51
  5. Ahn, J.-w.; Soergel, D.; Lin, X.; Zhang, M.: Mapping between ARTstor terms and the Getty Art and Architecture Thesaurus (2014) 0.03
    0.029550051 = product of:
      0.08865015 = sum of:
        0.08865015 = sum of:
          0.048260607 = weight(_text_:indexing in 1421) [ClassicSimilarity], result of:
            0.048260607 = score(doc=1421,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.2537542 = fieldWeight in 1421, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.046875 = fieldNorm(doc=1421)
          0.04038954 = weight(_text_:22 in 1421) [ClassicSimilarity], result of:
            0.04038954 = score(doc=1421,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.23214069 = fieldWeight in 1421, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1421)
      0.33333334 = coord(1/3)
    
    Abstract
    To make better use of knowledge organization systems (KOS) for query expansion, we have developed a pattern-based technique for composition ontology mapping in a specific domain. The technique was tested in a two-step mapping. The user's free-text queries were first mapped to Getty's Art & Architecture Thesaurus (AAT) terms. The AAT-based queries were then mapped to a search engine's indexing vocabulary (ARTstor terms). The result indicated that our technique has improved the mapping success rate from 40% to 70%. We discuss also how the technique may be applied to other KOS mapping and how it may be implemented in practical systems.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  6. Hafner, R.; Schelling, B.: Automatisierung der Sacherschließung mit Semantic Web Technologie (2015) 0.02
    0.015707046 = product of:
      0.047121134 = sum of:
        0.047121134 = product of:
          0.09424227 = sum of:
            0.09424227 = weight(_text_:22 in 8365) [ClassicSimilarity], result of:
              0.09424227 = score(doc=8365,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5416616 = fieldWeight in 8365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=8365)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 6.2015 16:08:38
  7. Bastos Vieira, S.; DeBrito, M.; Mustafa El Hadi, W.; Zumer, M.: Developing imaged KOS with the FRSAD Model : a conceptual methodology (2016) 0.01
    0.014187284 = product of:
      0.04256185 = sum of:
        0.04256185 = product of:
          0.0851237 = sum of:
            0.0851237 = weight(_text_:indexing in 3109) [ClassicSimilarity], result of:
              0.0851237 = score(doc=3109,freq=14.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.4475803 = fieldWeight in 3109, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3109)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This proposal presents the methodology of indexing with images suggested by De Brito and Caribé (2015). The imagetic model is used as a compatible mechanism with FRSAD for a global information share and use of subject data, both within the library sector and beyond. The conceptual model of imagetic indexing shows how images are related to topics and 'key-images' are interpreted as nomens to implement the FRSAD model. Indexing with images consists of using images instead of key-words or descriptors, to represent and organize information. Implementing the imaged navigation in OPACs denotes multiple advantages derived from this rethinking the OPAC anew, since we are looking forward to sharing concepts within the subject authority data. Images, carrying linguistic objects, permeate inter-social and cultural concepts. In practice it includes translated metadata, symmetrical multilingual thesaurus, or any traditional indexing tools. iOPAC embodies efforts focused on conceptual levels as expected from librarians. Imaged interfaces are more intuitive since users do not need specific training for information retrieval, offering easier comprehension of indexing codes, larger conceptual portability of descriptors (as images), and a better interoperability between discourse codes and indexing competences affecting positively social and cultural interoperability. The imagetic methodology deploys R&D fields for more suitable interfaces taking into consideration users with specific needs such as deafness and illiteracy. This methodology arouse questions about the paradigms of the primacy of orality in information systems and pave the way to a legitimacy of multiple perspectives in document indexing by suggesting a more universal communication system based on images. Interdisciplinarity in neurosciences, linguistics and information sciences would be desirable competencies for further investigations about he nature of cognitive processes in information organization and classification while developing assistive KOS for individuals with communication problems, such autism and deafness.
  8. Nilbe, S.: Semiautomatic merging of two universal thesauri : the case of Estonia (2011) 0.01
    0.0134057235 = product of:
      0.04021717 = sum of:
        0.04021717 = product of:
          0.08043434 = sum of:
            0.08043434 = weight(_text_:indexing in 3152) [ClassicSimilarity], result of:
              0.08043434 = score(doc=3152,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.42292362 = fieldWeight in 3152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3152)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  9. Lucarelli, A.; Viti, E.: Florence-Washington round trip : ways and intersections between semantic indexing tools in different languages (2015) 0.01
    0.011375135 = product of:
      0.034125403 = sum of:
        0.034125403 = product of:
          0.068250805 = sum of:
            0.068250805 = weight(_text_:indexing in 1886) [ClassicSimilarity], result of:
              0.068250805 = score(doc=1886,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3588626 = fieldWeight in 1886, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1886)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This article presents an Italian experience of developing streamlined semantic interoperability between the Italian Thesaurus of Nuovo soggettario and the Library of Congress Subject Headings (LCSH). This ongoing project must take into consideration the differences between the two indexing tools, while the criteria on which the resulting actions are based are being clarified continually. Reciprocal interoperability, thanks to the Simple Knowledge Organization System format, enables us to create links with English language subject headings. The National Central Library of Florence is studying methods of automatically catching LCSH equivalents and the question of how to take advantage of both Semantic Web outputs and the multilingual dataset of Wikidata.
  10. Celli, F. et al.: Enabling multilingual search through controlled vocabularies : the AGRIS approach (2016) 0.01
    0.011219318 = product of:
      0.033657953 = sum of:
        0.033657953 = product of:
          0.06731591 = sum of:
            0.06731591 = weight(_text_:22 in 3278) [ClassicSimilarity], result of:
              0.06731591 = score(doc=3278,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.38690117 = fieldWeight in 3278, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3278)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  11. Boteram, F.; Gödert, W.; Hubrich, J.: Semantic interoperability and retrieval paradigms (2010) 0.01
    0.01072458 = product of:
      0.032173738 = sum of:
        0.032173738 = product of:
          0.064347476 = sum of:
            0.064347476 = weight(_text_:indexing in 3362) [ClassicSimilarity], result of:
              0.064347476 = score(doc=3362,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3383389 = fieldWeight in 3362, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3362)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper presents a new approach to understanding how indexing strategies, models for interoperability and retrieval paradigms interact in information systems and how this can be used to support the design and implementation of components of a semantic navigation for information retrieval systems.
  12. Lösse, M.; Svensson, L.: "Classification at a Crossroad" : Internationales UDC-Seminar 2009 in Den Haag, Niederlande (2010) 0.01
    0.009519908 = product of:
      0.028559722 = sum of:
        0.028559722 = product of:
          0.057119444 = sum of:
            0.057119444 = weight(_text_:22 in 4379) [ClassicSimilarity], result of:
              0.057119444 = score(doc=4379,freq=4.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.32829654 = fieldWeight in 4379, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4379)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Am 29. und 30. Oktober 2009 fand in der Königlichen Bibliothek in Den Haag das zweite internationale UDC-Seminar zum Thema "Classification at a Crossroad" statt. Organisiert wurde diese Konferenz - wie auch die erste Konferenz dieser Art im Jahr 2007 - vom UDC-Konsortium (UDCC). Im Mittelpunkt der diesjährigen Veranstaltung stand die Erschließung des World Wide Web unter besserer Nutzung von Klassifikationen (im Besonderen natürlich der UDC), einschließlich benutzerfreundlicher Repräsentationen von Informationen und Wissen. Standards, neue Technologien und Dienste, semantische Suche und der multilinguale Zugriff spielten ebenfalls eine Rolle. 135 Teilnehmer aus 35 Ländern waren dazu nach Den Haag gekommen. Das Programm umfasste mit 22 Vorträgen aus 14 verschiedenen Ländern eine breite Palette, wobei Großbritannien mit fünf Beiträgen am stärksten vertreten war. Die Tagesschwerpunkte wurden an beiden Konferenztagen durch die Eröffnungsvorträge gesetzt, die dann in insgesamt sechs thematischen Sitzungen weiter vertieft wurden.
    Date
    22. 1.2010 15:06:54
  13. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.01
    0.009519908 = product of:
      0.028559722 = sum of:
        0.028559722 = product of:
          0.057119444 = sum of:
            0.057119444 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.057119444 = score(doc=1967,freq=4.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  14. Vlachidis, A.; Tudhope, D.: ¬A knowledge-based approach to information extraction for semantic interoperability in the archaeology domain (2016) 0.01
    0.009479279 = product of:
      0.028437834 = sum of:
        0.028437834 = product of:
          0.05687567 = sum of:
            0.05687567 = weight(_text_:indexing in 2895) [ClassicSimilarity], result of:
              0.05687567 = score(doc=2895,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29905218 = fieldWeight in 2895, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2895)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The article presents a method for automatic semantic indexing of archaeological grey-literature reports using empirical (rule-based) Information Extraction techniques in combination with domain-specific knowledge organization systems. The semantic annotation system (OPTIMA) performs the tasks of Named Entity Recognition, Relation Extraction, Negation Detection, and Word-Sense Disambiguation using hand-crafted rules and terminological resources for associating contextual abstractions with classes of the standard ontology CIDOC Conceptual Reference Model (CRM) for cultural heritage and its archaeological extension, CRM-EH. Relation Extraction (RE) performance benefits from a syntactic-based definition of RE patterns derived from domain oriented corpus analysis. The evaluation also shows clear benefit in the use of assistive natural language processing (NLP) modules relating to Word-Sense Disambiguation, Negation Detection, and Noun Phrase Validation, together with controlled thesaurus expansion. The semantic indexing results demonstrate the capacity of rule-based Information Extraction techniques to deliver interoperable semantic abstractions (semantic annotations) with respect to the CIDOC CRM and archaeological thesauri. Major contributions include recognition of relevant entities using shallow parsing NLP techniques driven by a complimentary use of ontological and terminological domain resources and empirical derivation of context-driven RE rules for the recognition of semantic relationships from phrases of unstructured text.
  15. Wicaksana, I.W.S.; Wahyudi, B.: Comparison Latent Semantic and WordNet approach for semantic similarity calculation (2011) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 689) [ClassicSimilarity], result of:
              0.05630404 = score(doc=689,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 689, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=689)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Object
    Latent semantic indexing
  16. Dunsire, G.: Enhancing information services using machine-to-machine terminology services (2011) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 1805) [ClassicSimilarity], result of:
              0.05630404 = score(doc=1805,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 1805, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1805)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  17. Jahns, Y.: 20 years SWD : German subject authority data prepared for the future (2011) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 1802) [ClassicSimilarity], result of:
              0.048260607 = score(doc=1802,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 1802, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1802)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  18. Panzer, M.: Increasing patient findability of medical research : annotating clinical trials using standard vocabularies (2017) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 2783) [ClassicSimilarity], result of:
              0.048260607 = score(doc=2783,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 2783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2783)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Multiple groups at Mayo Clinic organize knowledge with the aid of metadata for a variety of purposes. The ontology group focuses on consumer-oriented health information using several controlled vocabularies to support and coordinate care providers, consumers, clinical knowledge and, as part of its research management, information on clinical trials. Poor findability, inconsistent indexing and specialized language undermined the goal of increasing trial participation. The ontology group designed a metadata framework addressing disorders and procedures, investigational drugs and clinical departments, adopted and translated the clinical terminology of SNOMED CT and RxNorm vocabularies to consumer language and coordinated terminology with Mayo's Consumer Health Vocabulary. The result enables retrieval of clinical trial information from multiple access points including conditions, procedures, drug names, organizations involved and trial phase. The jump in inquiries since the search site was revised and vocabularies were modified show evidence of success.
  19. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2014) 0.01
    0.007933255 = product of:
      0.023799766 = sum of:
        0.023799766 = product of:
          0.04759953 = sum of:
            0.04759953 = weight(_text_:22 in 1962) [ClassicSimilarity], result of:
              0.04759953 = score(doc=1962,freq=4.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.27358043 = fieldWeight in 1962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1962)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This article reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The article discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and/or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the Dewey Decimal Classification [DDC] (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  20. Petras, V.: Heterogenitätsbehandlung und Terminology Mapping durch Crosskonkordanzen : eine Fallstudie (2010) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 3730) [ClassicSimilarity], result of:
              0.047121134 = score(doc=3730,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 3730, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3730)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly

Languages

  • e 29
  • d 6

Types

  • a 25
  • el 9
  • m 4
  • s 2
  • x 1
  • More… Less…