Search (9 results, page 1 of 1)

  • × year_i:[2020 TO 2030}
  • × theme_ss:"Computerlinguistik"
  1. Zhai, X.: ChatGPT user experience: : implications for education (2022) 0.03
    0.029886894 = product of:
      0.08966068 = sum of:
        0.08966068 = weight(_text_:systematic in 849) [ClassicSimilarity], result of:
          0.08966068 = score(doc=849,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 849, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=849)
      0.33333334 = coord(1/3)
    
    Abstract
    ChatGPT, a general-purpose conversation chatbot released on November 30, 2022, by OpenAI, is expected to impact every aspect of society. However, the potential impacts of this NLP tool on education remain unknown. Such impact can be enormous as the capacity of ChatGPT may drive changes to educational learning goals, learning activities, and assessment and evaluation practices. This study was conducted by piloting ChatGPT to write an academic paper, titled Artificial Intelligence for Education (see Appendix A). The piloting result suggests that ChatGPT is able to help researchers write a paper that is coherent, (partially) accurate, informative, and systematic. The writing is extremely efficient (2-3 hours) and involves very limited professional knowledge from the author. Drawing upon the user experience, I reflect on the potential impacts of ChatGPT, as well as similar AI tools, on education. The paper concludes by suggesting adjusting learning goals-students should be able to use AI tools to conduct subject-domain tasks and education should focus on improving students' creativity and critical thinking rather than general skills. To accomplish the learning goals, researchers should design AI-involved learning tasks to engage students in solving real-world problems. ChatGPT also raises concerns that students may outsource assessment tasks. This paper concludes that new formats of assessments are needed to focus on creativity and critical thinking that AI cannot substitute.
  2. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.03
    0.026304156 = product of:
      0.07891247 = sum of:
        0.07891247 = product of:
          0.2367374 = sum of:
            0.2367374 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.2367374 = score(doc=862,freq=2.0), product of:
                0.4212274 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.049684696 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  3. Chou, C.; Chu, T.: ¬An analysis of BERT (NLP) for assisted subject indexing for Project Gutenberg (2022) 0.02
    0.018768014 = product of:
      0.05630404 = sum of:
        0.05630404 = product of:
          0.11260808 = sum of:
            0.11260808 = weight(_text_:indexing in 1139) [ClassicSimilarity], result of:
              0.11260808 = score(doc=1139,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5920931 = fieldWeight in 1139, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1139)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In light of AI (Artificial Intelligence) and NLP (Natural language processing) technologies, this article examines the feasibility of using AI/NLP models to enhance the subject indexing of digital resources. While BERT (Bidirectional Encoder Representations from Transformers) models are widely used in scholarly communities, the authors assess whether BERT models can be used in machine-assisted indexing in the Project Gutenberg collection, through suggesting Library of Congress subject headings filtered by certain Library of Congress Classification subclass labels. The findings of this study are informative for further research on BERT models to assist with automatic subject indexing for digital library collections.
  4. ¬Der Student aus dem Computer (2023) 0.02
    0.015707046 = product of:
      0.047121134 = sum of:
        0.047121134 = product of:
          0.09424227 = sum of:
            0.09424227 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.09424227 = score(doc=1079,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    27. 1.2023 16:22:55
  5. Ali, C.B.; Haddad, H.; Slimani, Y.: Multi-word terms selection for information retrieval (2022) 0.01
    0.014988055 = product of:
      0.044964164 = sum of:
        0.044964164 = product of:
          0.08992833 = sum of:
            0.08992833 = weight(_text_:indexing in 900) [ClassicSimilarity], result of:
              0.08992833 = score(doc=900,freq=10.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.47284302 = fieldWeight in 900, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=900)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose A number of approaches and algorithms have been proposed over the years as a basis for automatic indexing. Many of these approaches suffer from precision inefficiency at low recall. The choice of indexing units has a great impact on search system effectiveness. The authors dive beyond simple terms indexing to propose a framework for multi-word terms (MWT) filtering and indexing. Design/methodology/approach In this paper, the authors rely on ranking MWT to filter them, keeping the most effective ones for the indexing process. The proposed model is based on filtering MWT according to their ability to capture the document topic and distinguish between different documents from the same collection. The authors rely on the hypothesis that the best MWT are those that achieve the greatest association degree. The experiments are carried out with English and French languages data sets. Findings The results indicate that this approach achieved precision enhancements at low recall, and it performed better than more advanced models based on terms dependencies. Originality/value Using and testing different association measures to select MWT that best describe the documents to enhance the precision in the first retrieved documents.
  6. Morris, V.: Automated language identification of bibliographic resources (2020) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
              0.053852726 = score(doc=5749,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 5749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5749)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 3.2020 19:04:22
  7. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.053852726 = score(doc=835,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    29.12.2022 18:22:55
  8. Rieger, F.: Lügende Computer (2023) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.053852726 = score(doc=912,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16. 3.2023 19:22:55
  9. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
              0.033657953 = score(doc=1171,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1171)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    23.11.2023 19:07:22