Search (30 results, page 2 of 2)

  • × author_ss:"Ingwersen, P."
  1. Ingwersen, P.: ¬The cognitive framework for information retrieval : a paradigmatic perspective (1996) 0.00
    7.051135E-4 = product of:
      0.002820454 = sum of:
        0.002820454 = product of:
          0.008461362 = sum of:
            0.008461362 = weight(_text_:a in 6114) [ClassicSimilarity], result of:
              0.008461362 = score(doc=6114,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15287387 = fieldWeight in 6114, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6114)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The paper presents the principles underlying the cognitive framework for Information Retrieval (IR). It introduces the concept of polyrepresentation applied simultaneously to the user's cognitive space and the information space of IR systems. The concept seeks to represent the current user's information need, problem state, and domain work task or interest in a structure of causality. Further, it suggests to apply different methods of representation and a variety of IR techniques of 'different cognitive and functional origin' simultaneously to each information object in the information space. The cognitive differences between such representations imply that by applying 'cognitive retrieval overlaps' of information objects, originating from different interpretations of such objects over time and by type, the degree of uncertainty inherent in IR is decreased and the intellectual access possibilities are increased. One consequence of the framework is its capability to elucidate the seemingly dubious assumptions underlying the predominant algorithmic retrieval models, such as, the vector space and probabilistic models
    Type
    a
  2. Ingwersen, P.; Willett, P.: ¬An introduction to algorithmic and cognitive approaches for information retrieval (1995) 0.00
    6.6478737E-4 = product of:
      0.0026591495 = sum of:
        0.0026591495 = product of:
          0.007977448 = sum of:
            0.007977448 = weight(_text_:a in 4344) [ClassicSimilarity], result of:
              0.007977448 = score(doc=4344,freq=4.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14413087 = fieldWeight in 4344, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4344)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    This paper provides an over-view of 2, complementary approaches to the design and implementation of information retrieval systems. The first approach focuses on the algorithms and data structures that are needed to maximise the effectiveness and the efficiency of the searches that can be carried out on text databases, while the second adopts a cognitive approach that focuses on the role of the user and of the knowledge sources involved in information retrieval. The paper argues for an holistic view of information retrieval that is capable of encompassing both of these approaches
    Type
    a
  3. Skov, M.; Larsen, B.; Ingwersen, P.: Inter and intra-document contexts applied in polyrepresentation for best match IR (2008) 0.00
    6.569507E-4 = product of:
      0.0026278028 = sum of:
        0.0026278028 = product of:
          0.007883408 = sum of:
            0.007883408 = weight(_text_:a in 2117) [ClassicSimilarity], result of:
              0.007883408 = score(doc=2117,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 2117, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2117)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The principle of polyrepresentation offers a theoretical framework for handling multiple contexts in information retrieval (IR). This paper presents an empirical laboratory study of polyrepresentation in restricted mode of the information space with focus on inter and intra-document features. The Cystic Fibrosis test collection indexed in the best match system InQuery constitutes the experimental setting. Overlaps between five functionally and/or cognitively different document representations are identified. Supporting the principle of polyrepresentation, results show that in general overlaps generated by three or four representations of different nature have higher precision than those generated from two representations or the single fields. This result pertains to both structured and unstructured query mode in best match retrieval, however, with the latter query mode demonstrating higher performance. The retrieval overlaps containing search keys from the bibliographic references provide the best retrieval performance and minor MeSH terms the worst. It is concluded that a highly structured query language is necessary when implementing the principle of polyrepresentation in a best match IR system because the principle is inherently Boolean. Finally a re-ranking test shows promising results when search results are re-ranked according to precision obtained in the overlaps whilst re-ranking by citations seems less useful when integrated into polyrepresentative applications.
    Type
    a
  4. Ingwersen, P.: Search procedures in the library : analysed from the cognitive point of view (1982) 0.00
    6.106462E-4 = product of:
      0.0024425848 = sum of:
        0.0024425848 = product of:
          0.007327754 = sum of:
            0.007327754 = weight(_text_:a in 2185) [ClassicSimilarity], result of:
              0.007327754 = score(doc=2185,freq=6.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.13239266 = fieldWeight in 2185, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2185)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Reports experimental results concerning user interaction with document organisation, user-librarian negotiation and the librarian's search process in public libraries. The focus of the investigations is on the cognitive aspects of information retrieval. Discusses the cognitive viewpoint on which the research is based, outlining applicable findings and theories within the fields of cognitive science and cognitive psychology. It is shown how the user's knowledge structure cope with the structures of the system. User needs seem often to be presented as a label which may create ambiguity problems. Functions of open and closed questions are investigated and certain behaviouristic factors discussed. Librarians prefer search activity before consideration of the presented problem. Without a user present the librarian's information retrieval process is determined by 3 search attitudes involving motives and expectations as to search routines and possibilities. Conceptual knowledge, previous search and working domain play important roles. The attitudes have consequences for the objectives concerning use of routines and for the use of search concepts
    Type
    a
  5. Ingwersen, P.: ¬The human approach to information science and management : the framework and prospects underlying the new Danish MSc programme (1994) 0.00
    6.106462E-4 = product of:
      0.0024425848 = sum of:
        0.0024425848 = product of:
          0.007327754 = sum of:
            0.007327754 = weight(_text_:a in 5349) [ClassicSimilarity], result of:
              0.007327754 = score(doc=5349,freq=6.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.13239266 = fieldWeight in 5349, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5349)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    This paper analyzes the conceptual background of the two-year MSC programme in Information Science and Management offered by the Royal School of Librarianship, Denmark, on top of the traditional course in Librarianship. The present state of library and information science (LIS) education is briefly analysed. Within this context, the programme structure and contents are outlined. The conception of information science which forms the background and framework for the programme structure is analysed and discussed. This conception of LIS emphasises a more profound human-driven approach to the domains of the discipline, and views information, technology, people, and the management aspects involved from a global perspective. The anticipated epistemological consequences of the human dimension are challenged. The major experiences gained from developing the Master's programme are analysed and the current syllabus described
    Type
    a
  6. Jepsen, E.T.; Seiden, P.; Ingwersen, P.; Björneborn, L.; Borlund, P.: Characteristics of scientific Web publications : preliminary data gathering and analysis (2004) 0.00
    5.875945E-4 = product of:
      0.002350378 = sum of:
        0.002350378 = product of:
          0.007051134 = sum of:
            0.007051134 = weight(_text_:a in 3091) [ClassicSimilarity], result of:
              0.007051134 = score(doc=3091,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 3091, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3091)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Because of the increasing presence of scientific publications an the Web, combined with the existing difficulties in easily verifying and retrieving these publications, research an techniques and methods for retrieval of scientific Web publications is called for. In this article, we report an the initial steps taken toward the construction of a test collection of scientific Web publications within the subject domain of plant biology. The steps reported are those of data gathering and data analysis aiming at identifying characteristics of scientific Web publications. The data used in this article were generated based an specifically selected domain topics that are searched for in three publicly accessible search engines (Google, AlITheWeb, and AItaVista). A sample of the retrieved hits was analyzed with regard to how various publication attributes correlated with the scientific quality of the content and whether this information could be employed to harvest, filter, and rank Web publications. The attributes analyzed were inlinks, outlinks, bibliographic references, file format, language, search engine overlap, structural position (according to site structure), and the occurrence of various types of metadata. As could be expected, the ranked output differs between the three search engines. Apparently, this is caused by differences in ranking algorithms rather than the databases themselves. In fact, because scientific Web content in this subject domain receives few inlinks, both AItaVista and AlITheWeb retrieved a higher degree of accessible scientific content than Google. Because of the search engine cutoffs of accessible URLs, the feasibility of using search engine output for Web content analysis is also discussed.
    Type
    a
  7. Järvelin, K.; Ingwersen, P.; Niemi, T.: ¬A user-oriented interface for generalised informetric analysis based on applying advanced data modelling techniques (2000) 0.00
    5.875945E-4 = product of:
      0.002350378 = sum of:
        0.002350378 = product of:
          0.007051134 = sum of:
            0.007051134 = weight(_text_:a in 4545) [ClassicSimilarity], result of:
              0.007051134 = score(doc=4545,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 4545, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4545)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    This article presents a novel user-oriented interface for generalised informetric analysis and demonstrates how informetric calculations can easily and declaratively be specified through advanced data modelling techniques. The interface is declarative and at a high level. Therefore it is easy to use, flexible and extensible. It enables end users to perform basic informetric ad hoc calculations easily and often with much less effort than in contemporary online retrieval systems. It also provides several fruitful generalisations of typical informetric measurements like impact factors. These are based on substituting traditional foci of analysis, for instance journals, by other object types, such as authors, organisations or countries. In the interface, bibliographic data are modelled as complex objects (non-first normal form relations) and terminological and citation networks involving transitive relationships are modelled as binary relations for deductive processing. The interface is flexible, because it makes it easy to switch focus between various object types for informetric calculations, e.g. from authors to institutions. Moreover, it is demonstrated that all informetric data can easily be broken down by criteria that foster advanced analysis, e.g. by years or content-bearing attributes. Such modelling allows flexible data aggregation along many dimensions. These salient features emerge from the query interface's general data restructuring and aggregation capabilities combined with transitive processing capabilities. The features are illustrated by means of sample queries and results in the article.
    Type
    a
  8. Järvelin, K.; Ingwersen, P.: User-oriented and cognitive models of information retrieval (2009) 0.00
    5.8168895E-4 = product of:
      0.0023267558 = sum of:
        0.0023267558 = product of:
          0.0069802674 = sum of:
            0.0069802674 = weight(_text_:a in 3901) [ClassicSimilarity], result of:
              0.0069802674 = score(doc=3901,freq=4.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12611452 = fieldWeight in 3901, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3901)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The domain of user-oriented and cognitive information retrieval (IR) is first discussed, followed by a discussion on the dimensions and types of models one may build for the domain. The focus of the present entry is on the models of user-oriented and cognitive IR, not on their empirical applications. Several models with different emphases on user-oriented and cognitive IR are presented-ranging from overall approaches and relevance models to procedural models, cognitive models, and task-based models. The present entry does not discuss empirical findings based on the models.
    Type
    a
  9. Ingwersen, P.; Wormell, I.: Ranganathan in the perspective of advanced information retrieval (1992) 0.00
    4.700756E-4 = product of:
      0.0018803024 = sum of:
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 7695) [ClassicSimilarity], result of:
              0.005640907 = score(doc=7695,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 7695, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7695)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Type
    a
  10. Ingwersen, P.: Information retrieval interaction (1992) 0.00
    4.700756E-4 = product of:
      0.0018803024 = sum of:
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 764) [ClassicSimilarity], result of:
              0.005640907 = score(doc=764,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 764, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=764)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    "Ingwersen defines IR interaction as the interactive communication processes that occur between the use, the intermediary (machine or human) and the IR system (text or database). The cognitive viewpoint takes into account the variety of states of knowledge associated with these major participants and thus allows a holistic treatment."