Search (28 results, page 1 of 2)

  • × theme_ss:"Case Based Reasoning"
  1. Pfeffer, M.: Automatische Vergabe von RVK-Notationen mittels fallbasiertem Schließen (2009) 0.04
    0.039741106 = product of:
      0.07948221 = sum of:
        0.05064729 = weight(_text_:von in 3051) [ClassicSimilarity], result of:
          0.05064729 = score(doc=3051,freq=10.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.39547473 = fieldWeight in 3051, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=3051)
        0.028834928 = product of:
          0.04325239 = sum of:
            0.004230681 = weight(_text_:a in 3051) [ClassicSimilarity], result of:
              0.004230681 = score(doc=3051,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.07643694 = fieldWeight in 3051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3051)
            0.039021708 = weight(_text_:22 in 3051) [ClassicSimilarity], result of:
              0.039021708 = score(doc=3051,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.23214069 = fieldWeight in 3051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3051)
          0.6666667 = coord(2/3)
      0.5 = coord(2/4)
    
    Abstract
    Klassifikation von bibliografischen Einheiten ist für einen systematischen Zugang zu den Beständen einer Bibliothek und deren Aufstellung unumgänglich. Bislang wurde diese Aufgabe von Fachexperten manuell erledigt, sei es individuell nach einer selbst entwickelten Systematik oder kooperativ nach einer gemeinsamen Systematik. In dieser Arbeit wird ein Verfahren zur Automatisierung des Klassifikationsvorgangs vorgestellt. Dabei kommt das Verfahren des fallbasierten Schließens zum Einsatz, das im Kontext der Forschung zur künstlichen Intelligenz entwickelt wurde. Das Verfahren liefert für jedes Werk, für das bibliografische Daten vorliegen, eine oder mehrere mögliche Klassifikationen. In Experimenten werden die Ergebnisse der automatischen Klassifikation mit der durch Fachexperten verglichen. Diese Experimente belegen die hohe Qualität der automatischen Klassifikation und dass das Verfahren geeignet ist, Fachexperten bei der Klassifikationsarbeit signifikant zu entlasten. Auch die nahezu vollständige Resystematisierung eines Bibliothekskataloges ist - mit gewissen Abstrichen - möglich.
    Date
    22. 8.2009 19:51:28
    Source
    Wissen bewegen - Bibliotheken in der Informationsgesellschaft / 97. Deutscher Bibliothekartag in Mannheim, 2008. Hrsg. von Ulrich Hohoff und Per Knudsen. Bearb. von Stefan Siebert
    Type
    a
  2. Czap, H.: Einführung in Wissensorganisation und Case-Based Reasoning (1996) 0.03
    0.03114036 = product of:
      0.06228072 = sum of:
        0.060400415 = weight(_text_:von in 186) [ClassicSimilarity], result of:
          0.060400415 = score(doc=186,freq=8.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.47163114 = fieldWeight in 186, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=186)
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 186) [ClassicSimilarity], result of:
              0.005640907 = score(doc=186,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=186)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    CBR ist eng gekoppelt mit Lernen, verstanden als Anreicherung von Wissen. Wissen wird unterteilt in Faktenwissen und Handhabungs-/Orientierungswissen. Letzteres verfügbar zu haben wird als primäres Ziel von Lernen und damit auch von CBR herausgearbeitet. Die Übertragbarkeitsproblematik, d.h. die Nutzung von gespeichertem Erfahrungswissen (alte Fälle und ihre Lösungen) zur Lösung neuer Problemstellungen wird an einem eingängigen Beispiel (Dunckers Bestrahlungsproblem illustriert). Abschließend wird der CBR-Zyklus kurz vorgestellt
    Type
    a
  3. Chen, Z.: ¬A conceptual model for storage and retrieval of short scientific texts (1993) 0.03
    0.027530577 = product of:
      0.11012231 = sum of:
        0.11012231 = product of:
          0.16518345 = sum of:
            0.014102268 = weight(_text_:a in 2715) [ClassicSimilarity], result of:
              0.014102268 = score(doc=2715,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.25478977 = fieldWeight in 2715, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2715)
            0.15108119 = weight(_text_:z in 2715) [ClassicSimilarity], result of:
              0.15108119 = score(doc=2715,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.58969533 = fieldWeight in 2715, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2715)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    A conceptual model for integrating short scientific texts is described, which extends classical text storage and retrieval. A brief comparison with related approaches (such as case-based reasoning and classification-based reasoning) is also provided
    Type
    a
  4. Coulon, C.-H.: ¬Die Rolle des Anpassungswissens im CBR : am Beispiel der Ausnutzung von Struktur im CBR (1996) 0.02
    0.022294924 = product of:
      0.044589847 = sum of:
        0.042709544 = weight(_text_:von in 5203) [ClassicSimilarity], result of:
          0.042709544 = score(doc=5203,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.3334936 = fieldWeight in 5203, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=5203)
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 5203) [ClassicSimilarity], result of:
              0.005640907 = score(doc=5203,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 5203, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5203)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Ein wesentlicher Vorteil des CBR im Vergleich zu generativen Ansätzen ist ein geringer Bedarf an das zu formalisierende Wissen. Insbesondere ist es möglich trotz unvollständigen Anpassungswissens vollständige Lösungen zu finden. Dieser Beitrag beschreibt, wodurch sich Anpassungswissen von Regelwissen unterscheidet und wieviel Anpassungswissen man unbedingt benötigt. Die Leistungsfähigkeit eines wissensarmen CBR-Ansatzes wird am Beispiel der Anpassung toplogischer Strukturen diskutiert
    Type
    a
  5. Analogie in der Wissensrepräsentation: Case-Based Reasoning und räumliche Modelle : 4. Tagung der deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Trier, 17.-20. Oktober 1995 (1996) 0.02
    0.019462723 = product of:
      0.038925447 = sum of:
        0.03775026 = weight(_text_:von in 5201) [ClassicSimilarity], result of:
          0.03775026 = score(doc=5201,freq=8.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.29476947 = fieldWeight in 5201, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5201)
        0.001175189 = product of:
          0.003525567 = sum of:
            0.003525567 = weight(_text_:a in 5201) [ClassicSimilarity], result of:
              0.003525567 = score(doc=5201,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.06369744 = fieldWeight in 5201, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5201)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Enthält die Beiträge: CZAP, H.: Einführung in die Wissensorganisation und Case-Based Reasoning (CBR); ALTHOFF, K.-D., R. TRAPHÖNER u. S. WESS: Efficient integration on induction and Case-Base Reasoning: the INRECA System; SCHIEMANN, I. u. A. WOLTERING: Fallspeicherorganisation in der CBR-Shell Janus; COULON, C.-H.: Die Rolle des Anpassungswissens im CBR (Am Beispiel der Ausnutzung von Struktur im CBR); SCHAAF, J.W.: Fischen und Versenken: ein anytime-Algorithmus zur Suche nach situationsgerechten Fällen; JAENECKE, P.: Erkenntnistheoretische Untersuchungen über fallbezogenes Schlußfolgern; LÖCKENHOFF, H.: Cabse-Based Teaching/Learning for issue orientation and control; BIES, W.: 'Denken in Bildern': zu den Metaphern der Wissensorganisation; PRIBBENOW, S.: Räumliches Wissen: zur Interaktion von Logik und Bildern; STOLLE, M. u. V. KIRCHBERG: Mental maps in der Stadtforschung: Grundlage und Perspektiven; BAYER, H. u. R. BAUEREISS: Der Familienatlas als sozialräumliche Information; HARDT, F., G. TASSOUKIS u. H.P. OHLY: Räumliche Hintergrundinformation in bibliographischen Datenbanken; SALENTIN, K.: Geodemographische Ansätze beim Sampling im Direktmarketingverfahren; PIERAU, K., G. NARWELEIT u. H. THÜMMLER: Entwicklung eines Geographisch-Historischen Informationssystems; LENSKI, W. u. E. WETTE-ROCH: Terminologie und Wissensrepräsentation in pragmatischer Sichtweise; FUGMANN, R.: Die Entlineaririserung und Strukturierung von Texten zur Inhaltserschließung und Wissensrepräsentation; LORENZ, B.: Überlegungen zur Verbundklassifikation; NACKE, O.: Ein einfaches Verfahren zur Analyse großer Wissensmengen; BOL, G., E. HOTZ u. T. STÜTZLE: Neuronale Netze zur Klassifikation von Fehlrern in der statistischen Prozeßregulierung
  6. Jaenecke, P.: Erkenntnistheoretische Untersuchungen über fallbezogenes Schlußfolgern (1996) 0.02
    0.016721193 = product of:
      0.033442385 = sum of:
        0.03203216 = weight(_text_:von in 5204) [ClassicSimilarity], result of:
          0.03203216 = score(doc=5204,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.2501202 = fieldWeight in 5204, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=5204)
        0.001410227 = product of:
          0.004230681 = sum of:
            0.004230681 = weight(_text_:a in 5204) [ClassicSimilarity], result of:
              0.004230681 = score(doc=5204,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.07643694 = fieldWeight in 5204, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5204)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Mangelndes methodisches Bewußtsein in der Künstlichen Intelligenz hat zur Folge, daß Methoden, die auf einer einzigen zunächst vielversprechenden Idee beruhen, zugunsten anderer fallengelassen werden, sowie sich ernste Schwierigkeiten ergeben. Doch für Methoden gilt nicht das Alles-oder-Nichts-Prinzip; Ziel muß es daher sein, verschiedene sich hinsichtlich ihrer Anwendbarkeit einander ergänzende Methoden aufeinander abzustimmen und zu einem arbeitsfähigen System zu vereinen; das trifft insbesondere auf das bereits vom Ansatz her auf Methodenvielfalt angelegte fallbezogene Schlußfolgern zu. Die von den Kognitionswissenschaften gebotenen Voraussetzungen sind jedoch für solch ein Vorhaben nicht günstig. Es herrscht ein Theorien- und Modellwirrwar, das zu einem Wirrwar von Begriffen, Sichtweisen und Verfahren geführt hat. Die vorliegende Arbeit skizziert einen Ausweg aus dieser unbefriedigenden Situation. Sie orientiert sich an den Fragen 'welche Aufgaben sollen mit fallbezogenem Schlußfolgern gelöst werden?', 'durch welche Merkmale ist dieser Ansatz charakterisiert?' und beschäftigt sich abschließend mit den sich aus den Antworten ergebenden Folgerungen
    Type
    a
  7. Sauer, C.S.: Analyse von Webcommunities und Extraktion von Wissen aus Communitydaten für Case-Based Reasoning Systeme (2010) 0.01
    0.013346733 = product of:
      0.05338693 = sum of:
        0.05338693 = weight(_text_:von in 2231) [ClassicSimilarity], result of:
          0.05338693 = score(doc=2231,freq=16.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.416867 = fieldWeight in 2231, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2231)
      0.25 = coord(1/4)
    
    Abstract
    Die vorliegende Arbeit befasst sich mit den Möglichkeiten der Informationsextraktion aus den Daten von Webcommunities und der Verwendung der extrahierten Informationen in Case-Based Reasoning- (CBR) Systemen. Im Rahmen der Arbeit wird auf die Entwicklung der Webcommunities im Zeitraum der letzten 30 Jahre eingegangen. Es wird eine Klassifikation der derzeitig anzutreffenden Webcommunities in verschiedene Kategorien von Webcommunities vorgenommen. Diese Klassifikation erfolgt hinsichtlich der Struktur, der technischen Mittel sowie der Interessen der Nutzer dieser Webcommunities. Aufbauend auf die vorgenommene Klassifikation von Webcommunities erfolgt eine Untersuchung der Eignung dieser Kategorien von Webcommunities zur Informationsextraktion im Kontext der Verwendung der extrahierten Informationen in CBR-Systemen. Im selben Kontext werden verschiedene Ansätze und Techniken der Informationsextraktion auf ihre Eignung zur Extraktion von Wissen speziell für die Wissenscontainer von CBR -Systeme geprüft. Aufbauend auf den dadurch gewonnenen Erkenntnissen wird, angelehnt an den Prozess der Knowledge Discovery in Databases, ein eigenes Prozessmodell der Wissensextraktion aus Webcommunities für CBR-Systeme entworfen. Im Zuge der näheren Betrachtung dieses Prozessmodells wird auf verschiedene, durch die beabsichtigte Verwendung der extrahierten Informationen in den vier Wissenscontainern des CBR bedingte, Anforderungen an NLP- sowie IE-Techniken, die zur Extraktion dieser Daten verwendet werden, eingegangen. Die in den theoretischen Betrachtungen erlangten Erkenntnisse werden dann dazu eingesetzt, eine Anwendung zur Informationsextraktion aus einer Webcommunity für ein CBR-System, in Form der Knowledge Extraction Workbench zu implementieren. Diese IEAnwendung arbeitet im Kontext des auf der SEASALT-Architektur aufbauenden Projektes docQuery. Die Realisierung dieser IE-Anwendung wird dokumentiert sowie die Extraktionsergebnisse der Anwendung hinsichtlich ihres Umfanges und ihrer Qualität evaluiert.
  8. Pfeffer, M.: Automatische Vergabe von RVK-Notationen anhand von bibliografischen Daten mittels fallbasiertem Schließen (2007) 0.01
    0.011325077 = product of:
      0.04530031 = sum of:
        0.04530031 = weight(_text_:von in 558) [ClassicSimilarity], result of:
          0.04530031 = score(doc=558,freq=8.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.35372335 = fieldWeight in 558, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.046875 = fieldNorm(doc=558)
      0.25 = coord(1/4)
    
    Abstract
    Klassifikation von bibliografischen Einheiten ist für einen systematischen Zugang zu den Beständen einer Bibliothek und deren Aufstellung unumgänglich. Bislang wurde diese Aufgabe von Fachexperten manuell erledigt, sei es individuell nach einer selbst entwickelten Systematik oder kooperativ nach einer gemeinsamen Systematik. In dieser Arbeit wird ein Verfahren zur Automatisierung des Klassifikationsvorgangs vorgestellt. Dabei kommt das Verfahren des fallbasierten Schließens zum Einsatz, das im Kontext der Forschung zur künstlichen Intelligenz entwickelt wurde. Das Verfahren liefert für jedes Werk, für das bibliografische Daten vorliegen, eine oder mehrere mögliche Klassifikationen. In Experimenten werden die Ergebnisse der automatischen Klassifikation mit der durch Fachexperten verglichen. Diese Experimente belegen die hohe Qualität der automatischen Klassifikation und dass das Verfahren geeignet ist, Fachexperten bei der Klassifikationsarbeit signifikant zu entlasten. Auch die nahezu vollständige Resystematisierung eines Bibliothekskataloges ist - mit gewissen Abstrichen - möglich.
  9. Ram, A.; Santamaria, J.C.: Continuous case-based reasoning (1997) 0.01
    0.010299881 = product of:
      0.041199524 = sum of:
        0.041199524 = product of:
          0.061799284 = sum of:
            0.009770338 = weight(_text_:a in 435) [ClassicSimilarity], result of:
              0.009770338 = score(doc=435,freq=6.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.17652355 = fieldWeight in 435, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=435)
            0.052028947 = weight(_text_:22 in 435) [ClassicSimilarity], result of:
              0.052028947 = score(doc=435,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.30952093 = fieldWeight in 435, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=435)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Introduces a new method for continuous case-based reasoning, and discusses its applications to the dynamic selection, modification and acquisition of robot bahaviours in an autonomous navigation system, SINS (self-improving navigation system): The computer program and the underlying method are systematically evaluated through statistical analysis of results from several empirical studies. Discusses case-based reasoning issues addressed by this research
    Date
    6. 3.1997 16:22:15
    Type
    a
  10. Kohno, T.: Error repair and knowledge acquisition via case-based reasoning (1997) 0.01
    0.010299881 = product of:
      0.041199524 = sum of:
        0.041199524 = product of:
          0.061799284 = sum of:
            0.009770338 = weight(_text_:a in 437) [ClassicSimilarity], result of:
              0.009770338 = score(doc=437,freq=6.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.17652355 = fieldWeight in 437, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=437)
            0.052028947 = weight(_text_:22 in 437) [ClassicSimilarity], result of:
              0.052028947 = score(doc=437,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.30952093 = fieldWeight in 437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=437)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Proposes a new architecture combining rule-based reasoning (RBR), case based reasoning (CBR) and knowledge acquisition technology in a system which solves pattern search problems. Details the pattern search problem, the system architecture and functions, error repair method via case-based reasoning, the knowledge acquisition method, system evaluation, and discusses related work
    Date
    6. 3.1997 16:22:15
    Type
    a
  11. Golding, A.R.; Rosenbloom, P.S.: Improving accuracy by combining rule-based and case-based reasoning (1996) 0.01
    0.010001066 = product of:
      0.040004265 = sum of:
        0.040004265 = product of:
          0.060006395 = sum of:
            0.007977448 = weight(_text_:a in 607) [ClassicSimilarity], result of:
              0.007977448 = score(doc=607,freq=4.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14413087 = fieldWeight in 607, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=607)
            0.052028947 = weight(_text_:22 in 607) [ClassicSimilarity], result of:
              0.052028947 = score(doc=607,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.30952093 = fieldWeight in 607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=607)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Presents an architeture for combining rule-based and case-based reasoning. It is applied to the problem of name pronunciation. Presents the system independent of the domain of name pronunciation. Describes the Anapron system, which instantiates the architecture for name pronunciation. Presents a set of experiments on Anapron, the key result being an empirical demonstration of the improvement obtained by combining rules and cases. Discusses related work
    Date
    6. 3.1997 16:22:15
    Type
    a
  12. Mazzucchelli, A.; Sartori , F.: String similarity in CBR platforms : a preliminary study (2014) 0.01
    0.009602584 = product of:
      0.038410336 = sum of:
        0.038410336 = product of:
          0.057615504 = sum of:
            0.012090176 = weight(_text_:a in 1568) [ClassicSimilarity], result of:
              0.012090176 = score(doc=1568,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.21843673 = fieldWeight in 1568, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1568)
            0.045525327 = weight(_text_:22 in 1568) [ClassicSimilarity], result of:
              0.045525327 = score(doc=1568,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.2708308 = fieldWeight in 1568, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1568)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Case Based Reasoning is a very important research trend in Artificial Intelligence and can be a powerful approach in the solution of complex problems characterized by heterogeneous knowledge. In this paper we present an ongoing research project where CBR is exploited to support the identification of enterprises potentially going to bankruptcy, through a comparison of their balance indexes with the ones of similar and already closed firms. In particular, the paper focuses on how developing similarity measures for strings can be profitably supported by metadata models of case structures and semantic methods like Query Expansion.
    Pages
    S.22-29
    Type
    a
  13. Akerele, O.; David, A.; Osofisan, A.: Using the concepts of Case Based Reasoning and Basic Categories for enhancing adaptation to the user's level of knowledge in Decision Support System (2014) 0.01
    0.0077249105 = product of:
      0.030899642 = sum of:
        0.030899642 = product of:
          0.046349462 = sum of:
            0.007327754 = weight(_text_:a in 1449) [ClassicSimilarity], result of:
              0.007327754 = score(doc=1449,freq=6.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.13239266 = fieldWeight in 1449, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1449)
            0.039021708 = weight(_text_:22 in 1449) [ClassicSimilarity], result of:
              0.039021708 = score(doc=1449,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.23214069 = fieldWeight in 1449, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1449)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  14. Dearden, A.M.; Harrison, M.D.: Abstract models for HCI (1997) 0.00
    0.0012339486 = product of:
      0.0049357945 = sum of:
        0.0049357945 = product of:
          0.014807383 = sum of:
            0.014807383 = weight(_text_:a in 794) [ClassicSimilarity], result of:
              0.014807383 = score(doc=794,freq=18.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.26752928 = fieldWeight in 794, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=794)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Investigates the use of formal mathematical models in the design of interactive systems and argues for the development of generic models that describe the behaviour of a class of interactive systems. It is possible to construct a generic model of a class of interactive systems at an intermediate level of abstraction. Such a model would offer wider reusability than detailed specifications of a single system, but greater expressiveness and support for software development than fully generate abstract models. Reviews a number of existing models in the literature and presents a generic model of interactive case memories, a class of systems used in case-based reasoning
    Type
    a
  15. Veleso, M.; Munoz-Avila, H.; Bergmann, R.: Case-based planning : selected methods and systems (1996) 0.00
    0.001175189 = product of:
      0.004700756 = sum of:
        0.004700756 = product of:
          0.014102268 = sum of:
            0.014102268 = weight(_text_:a in 7477) [ClassicSimilarity], result of:
              0.014102268 = score(doc=7477,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.25478977 = fieldWeight in 7477, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=7477)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Describes a framework for case based planning based on the case based reasoning process model. It covers work based on the integration of a generative problem solver with a case based component. Describes case based reasoning planning systems developed at the Carnegie Mellon University, Pittsburgh
    Type
    a
  16. Araj, H.: Integration of an analogical reasoning model in a model of case resolution (1996) 0.00
    0.0011633779 = product of:
      0.0046535116 = sum of:
        0.0046535116 = product of:
          0.013960535 = sum of:
            0.013960535 = weight(_text_:a in 527) [ClassicSimilarity], result of:
              0.013960535 = score(doc=527,freq=16.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.25222903 = fieldWeight in 527, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=527)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The resolution of cases in law depends on the generation of metaphors by analogy. It progresses by association, affinity and juxtaposition of two divergent ideas in an integrative approach. To argue a case, a legal expert cannot limit himself to the perception of isolated facts, but instead must find affinities between fields expressing more cohesion in law. In this paper, it is argued that the legal specialist relies on abstract categorization to discover a precedent and thereby create a metaphorical link that serves in the argumentation stage, and also later on in the resolution of the case. On this basis, a model of case reasoning is charted that integrates a model of analogical reasoning
    Type
    a
  17. Mahapatra, R.; Sen, A.: Case base management systems : providing database support to case-based reasoners (1994) 0.00
    0.0011514454 = product of:
      0.0046057818 = sum of:
        0.0046057818 = product of:
          0.013817345 = sum of:
            0.013817345 = weight(_text_:a in 525) [ClassicSimilarity], result of:
              0.013817345 = score(doc=525,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.24964198 = fieldWeight in 525, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=525)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Case based reasoning offers a new approach for developing knowledge based systems. Most systems are currently prototypes. A number of research issues need to be resolved to facilitate the transition of these prototypes to large application systems, the primary issue being to develop data management support for these prototypes. Analyzes this data management support and proposes a new concept called a casease management system to perfom data management functions for case based systems
    Type
    a
  18. Rissland, E.L.; Daniels, J.J.: ¬The synergistic application of CBR to IR (1996) 0.00
    0.0010576702 = product of:
      0.004230681 = sum of:
        0.004230681 = product of:
          0.012692042 = sum of:
            0.012692042 = weight(_text_:a in 7736) [ClassicSimilarity], result of:
              0.012692042 = score(doc=7736,freq=18.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.22931081 = fieldWeight in 7736, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7736)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Discusses a hybrid approach combining case-based reasoning and information retrieval for the retrieval of full text documents. It takes as input a standard symbolic representation of a problem case and retrieves text of relevant cases from a document collection dramatically larger than the case base available to the CBR system. It works by performing a standard HYPO style analysis and uses the texts associated with important classes of cases found in this analysis to seed a modified version of INQUERY's relevance feedback mechanism in order to generate a query composed of individual terms or pairs of terms. It exteds the reach of CBR to much larger corpora, and it anbales the injection of knowledge based techniques into traditional IR. Describes the CBR-IR approach and reports on-going experiments
    Footnote
    Contribution to a special issue on the application of artificial intelligence to information retrieval
    Type
    a
  19. Ozturk, P.; Aamodt, A.: ¬A context model for knowledge-intensive case-based reasoning (1998) 0.00
    0.0010511212 = product of:
      0.0042044846 = sum of:
        0.0042044846 = product of:
          0.012613453 = sum of:
            0.012613453 = weight(_text_:a in 3844) [ClassicSimilarity], result of:
              0.012613453 = score(doc=3844,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.22789092 = fieldWeight in 3844, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3844)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Reports on research which studied how the incorporation of case-specific, episodic, knowledge enables decision-support systems to become more robust and to adapt to a changing environment by continuously retaining new problem-solving cases as they occur during normal system operation
    Footnote
    Contribution to a special issue on using context in computer applications
    Type
    a
  20. Ress, D.A.; Young, R.E.: ¬A distributed fuzzy constraint satisfaction system with context-based reasoning (1998) 0.00
    0.0010075148 = product of:
      0.004030059 = sum of:
        0.004030059 = product of:
          0.012090176 = sum of:
            0.012090176 = weight(_text_:a in 3842) [ClassicSimilarity], result of:
              0.012090176 = score(doc=3842,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.21843673 = fieldWeight in 3842, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3842)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Presents a fuzzy constraint satisfaction system which can be used in a distributive environment where large problems can be broken down into smaller constraint networks for easier processing. Identifies contexts which exist within the constraint satisfaction system. Context based reasoning is identified both within and among constraint networks. Outlines the motviation behind the research and describes the fuzzy constraint satisfaction system FuzCon. Points out 3 mappings of the context-based reasoning 'ist' operator to fuzzy constraints and presents an example of designing a printed wiring board
    Footnote
    Contribution to a special issue on using context in computer applications
    Type
    a