Search (26 results, page 1 of 2)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Semantic Web"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.03
    0.027244702 = product of:
      0.054489404 = sum of:
        0.054489404 = product of:
          0.16346821 = sum of:
            0.16346821 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16346821 = score(doc=701,freq=2.0), product of:
                0.43628904 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05146125 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.02
    0.024403011 = product of:
      0.048806023 = sum of:
        0.048806023 = product of:
          0.097612046 = sum of:
            0.097612046 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.097612046 = score(doc=4643,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  3. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.02
    0.020916866 = product of:
      0.041833732 = sum of:
        0.041833732 = product of:
          0.083667465 = sum of:
            0.083667465 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.083667465 = score(doc=6048,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  4. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.02
    0.020916866 = product of:
      0.041833732 = sum of:
        0.041833732 = product of:
          0.083667465 = sum of:
            0.083667465 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.083667465 = score(doc=100,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14
  5. Campbell, D.G.: Derrida, logocentrism, and the concept of warrant on the Semantic Web (2008) 0.02
    0.01993374 = product of:
      0.03986748 = sum of:
        0.03986748 = product of:
          0.07973496 = sum of:
            0.07973496 = weight(_text_:network in 2507) [ClassicSimilarity], result of:
              0.07973496 = score(doc=2507,freq=4.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.34791988 = fieldWeight in 2507, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2507)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    The highly-structured data standards of the Semantic Web contain a promising venue for the migration of library subject access standards onto the World Wide Web. The new functionalities of the Web, however, along with the anticipated capabilities of intelligent Web agents, suggest that information on the Semantic Web will have much more flexibility, diversity and mutability. We need, therefore, a method for recognizing and assessing the principles whereby Semantic Web information can combine together in productive and useful ways. This paper will argue that the concept of warrant in traditional library science, can provide a useful means of translating library knowledge structures into Web-based knowledge structures. Using Derrida's concept of logocentrism, this paper suggests that what while "warrant" in library science traditionally alludes to the principles by which concepts are admitted into the design of a classification or access system, "warrant" on the Semantic Web alludes to the principles by which Web resources can be admitted into a network of information uses. Furthermore, library information practice suggests a far more complex network of warrant concepts that provide a subtlety and richness to knowledge organization that the Semantic Web has not yet attained.
  6. Mayr, P.; Mutschke, P.; Petras, V.: Reducing semantic complexity in distributed digital libraries : Treatment of term vagueness and document re-ranking (2008) 0.01
    0.014095282 = product of:
      0.028190564 = sum of:
        0.028190564 = product of:
          0.05638113 = sum of:
            0.05638113 = weight(_text_:network in 1909) [ClassicSimilarity], result of:
              0.05638113 = score(doc=1909,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2460165 = fieldWeight in 1909, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1909)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The general science portal "vascoda" merges structured, high-quality information collections from more than 40 providers on the basis of search engine technology (FAST) and a concept which treats semantic heterogeneity between different controlled vocabularies. First experiences with the portal show some weaknesses of this approach which come out in most metadata-driven Digital Libraries (DLs) or subject specific portals. The purpose of the paper is to propose models to reduce the semantic complexity in heterogeneous DLs. The aim is to introduce value-added services (treatment of term vagueness and document re-ranking) that gain a certain quality in DLs if they are combined with heterogeneity components established in the project "Competence Center Modeling and Treatment of Semantic Heterogeneity". Design/methodology/approach - Two methods, which are derived from scientometrics and network analysis, will be implemented with the objective to re-rank result sets by the following structural properties: the ranking of the results by core journals (so-called Bradfordizing) and ranking by centrality of authors in co-authorship networks. Findings - The methods, which will be implemented, focus on the query and on the result side of a search and are designed to positively influence each other. Conceptually, they will improve the search quality and guarantee that the most relevant documents in result sets will be ranked higher. Originality/value - The central impact of the paper focuses on the integration of three structural value-adding methods, which aim at reducing the semantic complexity represented in distributed DLs at several stages in the information retrieval process: query construction, search and ranking and re-ranking.
  7. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.013944578 = product of:
      0.027889157 = sum of:
        0.027889157 = product of:
          0.055778313 = sum of:
            0.055778313 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.055778313 = score(doc=3376,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.2010 16:58:22
  8. OWL Web Ontology Language Test Cases (2004) 0.01
    0.013944578 = product of:
      0.027889157 = sum of:
        0.027889157 = product of:
          0.055778313 = sum of:
            0.055778313 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.055778313 = score(doc=4685,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    14. 8.2011 13:33:22
  9. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.01
    0.012201506 = product of:
      0.024403011 = sum of:
        0.024403011 = product of:
          0.048806023 = sum of:
            0.048806023 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.048806023 = score(doc=1026,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  10. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.01
    0.012201506 = product of:
      0.024403011 = sum of:
        0.024403011 = product of:
          0.048806023 = sum of:
            0.048806023 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.048806023 = score(doc=2640,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2708308 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  11. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.01
    0.012201506 = product of:
      0.024403011 = sum of:
        0.024403011 = product of:
          0.048806023 = sum of:
            0.048806023 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.048806023 = score(doc=4184,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2011 10:38:28
  12. Blumauer, A.; Pellegrini, T.: Semantic Web Revisited : Eine kurze Einführung in das Social Semantic Web (2009) 0.01
    0.012201506 = product of:
      0.024403011 = sum of:
        0.024403011 = product of:
          0.048806023 = sum of:
            0.048806023 = weight(_text_:22 in 4855) [ClassicSimilarity], result of:
              0.048806023 = score(doc=4855,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2708308 = fieldWeight in 4855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4855)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.3-22
  13. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.012201506 = product of:
      0.024403011 = sum of:
        0.024403011 = product of:
          0.048806023 = sum of:
            0.048806023 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.048806023 = score(doc=759,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    11. 5.2013 19:22:18
  14. Feigenbaum, L.; Herman, I.; Hongsermeier, T.; Neumann, E.; Stephens, S.: ¬The Semantic Web in action (2007) 0.01
    0.011276226 = product of:
      0.022552451 = sum of:
        0.022552451 = product of:
          0.045104902 = sum of:
            0.045104902 = weight(_text_:network in 3000) [ClassicSimilarity], result of:
              0.045104902 = score(doc=3000,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.1968132 = fieldWeight in 3000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3000)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Six years ago in this magazine, Tim Berners-Lee, James Hendler and Ora Lassila unveiled a nascent vision of the Semantic Web: a highly interconnected network of data that could be easily accessed and understood by any desktop or handheld machine. They painted a future of intelligent software agents that would head out on the World Wide Web and automatically book flights and hotels for our trips, update our medical records and give us a single, customized answer to a particular question without our having to search for information or pore through results. They also presented the young technologies that would make this vision come true: a common language for representing data that could be understood by all kinds of software agents; ontologies--sets of statements--that translate information from disparate databases into common terms; and rules that allow software agents to reason about the information described in those terms. The data format, ontologies and reasoning software would operate like one big application on the World Wide Web, analyzing all the raw data stored in online databases as well as all the data about the text, images, video and communications the Web contained. Like the Web itself, the Semantic Web would grow in a grassroots fashion, only this time aided by working groups within the World Wide Web Consortium, which helps to advance the global medium. Since then skeptics have said the Semantic Web would be too difficult for people to understand or exploit. Not so. The enabling technologies have come of age. A vibrant community of early adopters has agreed on standards that have steadily made the Semantic Web practical to use. Large companies have major projects under way that will greatly improve the efficiencies of in-house operations and of scientific research. Other firms are using the Semantic Web to enhance business-to-business interactions and to build the hidden data-processing structures, or back ends, behind new consumer services. And like an iceberg, the tip of this large body of work is emerging in direct consumer applications, too.
  15. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.01
    0.010458433 = product of:
      0.020916866 = sum of:
        0.020916866 = product of:
          0.041833732 = sum of:
            0.041833732 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.041833732 = score(doc=2418,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
  16. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.01
    0.010458433 = product of:
      0.020916866 = sum of:
        0.020916866 = product of:
          0.041833732 = sum of:
            0.041833732 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.041833732 = score(doc=2556,freq=2.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30.12.2008 18:22:46
  17. Knitting the semantic Web (2007) 0.01
    0.009866697 = product of:
      0.019733394 = sum of:
        0.019733394 = product of:
          0.039466787 = sum of:
            0.039466787 = weight(_text_:network in 1397) [ClassicSimilarity], result of:
              0.039466787 = score(doc=1397,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.17221154 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1397)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Semantic Web, the extension that goes beyond the current Web, better enables computers and people to effectively work together by giving information well-defined meaning. Knitting the Semantic Web explains the interdisciplinary efforts underway to build a more library-like Web through "semantic knitting." The book examines tagging information with standardized semantic metadata to result in a network able to support computational activities and provide people with services efficiently. Leaders in library and information science, computer science, and information intensive domains provide insight and inspiration to give readers a greater understanding in the development, growth, and maintenance of the Semantic Web. Librarians are uniquely qualified to play a major role in the development and maintenance of the Semantic Web. Knitting the Semantic Web closely examines this crucial relationship in detail. This single source reviews the foundations, standards, and tools of the Semantic Web, as well as discussions on projects and perspectives. Many chapters include figures to illustrate concepts and ideas, and the entire text is extensively referenced. Topics in Knitting the Semantic Web include: - RDF, its expressive power, and its ability to underlie the new Library catalog card for the coming century - the value and application for controlled vocabularies - SKOS (Simple Knowledge Organization System), the newest Semantic Web language - managing scheme versioning in the Semantic Web - Physnet portal service for physics - Semantic Web technologies in biomedicine - developing the United Nations Food and Agriculture ontology - Friend Of A Friend (FOAF) vocabulary specification-with a real world case study at a university - and more Knitting the Semantic Web is a stimulating resource for professionals, researchers, educators, and students in library and information science, computer science, information architecture, Web design, and Web services.
  18. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.01
    0.009866697 = product of:
      0.019733394 = sum of:
        0.019733394 = product of:
          0.039466787 = sum of:
            0.039466787 = weight(_text_:network in 3062) [ClassicSimilarity], result of:
              0.039466787 = score(doc=3062,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.17221154 = fieldWeight in 3062, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  19. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.01
    0.009866697 = product of:
      0.019733394 = sum of:
        0.019733394 = product of:
          0.039466787 = sum of:
            0.039466787 = weight(_text_:network in 4409) [ClassicSimilarity], result of:
              0.039466787 = score(doc=4409,freq=2.0), product of:
                0.22917621 = queryWeight, product of:
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.05146125 = queryNorm
                0.17221154 = fieldWeight in 4409, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.4533744 = idf(docFreq=1398, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4409)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
  20. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.01
    0.009860306 = product of:
      0.019720612 = sum of:
        0.019720612 = product of:
          0.039441224 = sum of:
            0.039441224 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.039441224 = score(doc=2654,freq=4.0), product of:
                0.18020853 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05146125 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas

Languages

  • e 21
  • d 5

Types