Search (8 results, page 1 of 1)

  • × author_ss:"Greenberg, J."
  1. Greenberg, J.: Automatic query expansion via lexical-semantic relationships (2001) 0.04
    0.0438943 = product of:
      0.13168289 = sum of:
        0.13168289 = weight(_text_:query in 5703) [ClassicSimilarity], result of:
          0.13168289 = score(doc=5703,freq=10.0), product of:
            0.22937049 = queryWeight, product of:
              4.6476326 = idf(docFreq=1151, maxDocs=44218)
              0.049352113 = queryNorm
            0.5741056 = fieldWeight in 5703, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.6476326 = idf(docFreq=1151, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5703)
      0.33333334 = coord(1/3)
    
    Abstract
    Structured thesauri encode equivalent, hierarchical, and associative relationships and have been developed as indexing/retrieval tools. Despite the fact that these tools provide a rich semantic network of vocabulary terms, they are seldom employed for automatic query expansion (QE) activities. This article reports on an experiment that examined whether thesaurus terms, related to query in a specified semantic way (as synonyms and partial-synonyms (SYNs), narrower terms (NTs), related terms (RTs), and broader terms (BTs)), could be identified as having a more positive impact on retrieval effectiveness when added to a query through automatic QE. The research found that automatic QE via SYNs and NTs increased relative recall with a decline in precision that was not statistically significant, and that automatic QE via RTs and BTs increased relative recall with a decline in precision that was statistically significant. Recallbased and a precision-based ranking orders for automatic QE via semantically encoded thesauri terminology were identified. Mapping results found between enduser query terms and the ProQuest Controlled Vocabulary (1997) (the thesaurus used in this study) are reported, and future research foci related to the investigation are discussed
  2. Greenberg, J.: Optimal query expansion (QE) processing methods with semantically encoded structured thesaurus terminology (2001) 0.03
    0.03331343 = product of:
      0.09994029 = sum of:
        0.09994029 = weight(_text_:query in 5750) [ClassicSimilarity], result of:
          0.09994029 = score(doc=5750,freq=4.0), product of:
            0.22937049 = queryWeight, product of:
              4.6476326 = idf(docFreq=1151, maxDocs=44218)
              0.049352113 = queryNorm
            0.43571556 = fieldWeight in 5750, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.6476326 = idf(docFreq=1151, maxDocs=44218)
              0.046875 = fieldNorm(doc=5750)
      0.33333334 = coord(1/3)
    
    Abstract
    While researchers have explored the value of structured thesauri as controlled vocabularies for general information retrieval (IR) activities, they have not identified the optimal query expansion (QE) processing methods for taking advantage of the semantic encoding underlying the terminology in these tools. The study reported on in this article addresses this question, and examined whether QE via semantically encoded thesauri terminology is more effective in the automatic or interactive processing environment. The research found that, regardless of end-users' retrieval goals, synonyms and partial synonyms (SYNs) and narrower terms (NTs) are generally good candidates for automatic QE and that related (RTs) are better candidates for interactive QE. The study also examined end-users' selection of semantically encoded thesauri terms for interactive QE, and explored how retrieval goals and QE processes may be combined in future thesauri-supported IR systems
  3. Greenberg, J.: User comprehension and application of information retrieval thesauri (2004) 0.02
    0.023556154 = product of:
      0.07066846 = sum of:
        0.07066846 = weight(_text_:query in 5008) [ClassicSimilarity], result of:
          0.07066846 = score(doc=5008,freq=2.0), product of:
            0.22937049 = queryWeight, product of:
              4.6476326 = idf(docFreq=1151, maxDocs=44218)
              0.049352113 = queryNorm
            0.30809742 = fieldWeight in 5008, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6476326 = idf(docFreq=1151, maxDocs=44218)
              0.046875 = fieldNorm(doc=5008)
      0.33333334 = coord(1/3)
    
    Abstract
    While information retrieval thesauri may improve search results, there is little research documenting whether general information system users employ these vocabulary tools. This article explores user comprehension and searching with thesauri. Data was gathered as part of a larger empirical query-expansion study involving the ProQuest Controlled Vocabulary. The results suggest that users' knowledge of thesauri is extremely limited. After receiving a basic thesaurus introduction, however, users indicate a desire to employ these tools. The most significant result was that users expressed a preference for thesauri employment through interactive processing or a combination of automatic and interactive processing, compared to exclusively automatic processing. This article defines information retrieval thesauri, summarizes research results, considers circumstances underlying users' knowledge and searching with thesauri, and highlights future research needs.
  4. Grabus, S.; Logan, P.M.; Greenberg, J.: Temporal concept drift and alignment : an empirical approach to comparing knowledge organization systems over time (2022) 0.01
    0.01417559 = product of:
      0.04252677 = sum of:
        0.04252677 = product of:
          0.08505354 = sum of:
            0.08505354 = weight(_text_:page in 1100) [ClassicSimilarity], result of:
              0.08505354 = score(doc=1100,freq=2.0), product of:
                0.27565226 = queryWeight, product of:
                  5.5854197 = idf(docFreq=450, maxDocs=44218)
                  0.049352113 = queryNorm
                0.30855376 = fieldWeight in 1100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.5854197 = idf(docFreq=450, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1100)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: https://www.nomos-elibrary.de/10.5771/0943-7444-2022-2/ko-knowledge-organization-jahrgang-49-2022-heft-2?page=1.
  5. White, H.C.; Carrier, S.; Thompson, A.; Greenberg, J.; Scherle, R.: ¬The Dryad Data Repository : a Singapore framework metadata architecture in a DSpace environment (2008) 0.01
    0.0078009525 = product of:
      0.023402857 = sum of:
        0.023402857 = product of:
          0.046805713 = sum of:
            0.046805713 = weight(_text_:22 in 2592) [ClassicSimilarity], result of:
              0.046805713 = score(doc=2592,freq=2.0), product of:
                0.1728227 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049352113 = queryNorm
                0.2708308 = fieldWeight in 2592, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2592)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. White, H.; Willis, C.; Greenberg, J.: HIVEing : the effect of a semantic web technology on inter-indexer consistency (2014) 0.01
    0.0055721086 = product of:
      0.016716326 = sum of:
        0.016716326 = product of:
          0.03343265 = sum of:
            0.03343265 = weight(_text_:22 in 1781) [ClassicSimilarity], result of:
              0.03343265 = score(doc=1781,freq=2.0), product of:
                0.1728227 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049352113 = queryNorm
                0.19345059 = fieldWeight in 1781, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1781)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to examine the effect of the Helping Interdisciplinary Vocabulary Engineering (HIVE) system on the inter-indexer consistency of information professionals when assigning keywords to a scientific abstract. This study examined first, the inter-indexer consistency of potential HIVE users; second, the impact HIVE had on consistency; and third, challenges associated with using HIVE. Design/methodology/approach - A within-subjects quasi-experimental research design was used for this study. Data were collected using a task-scenario based questionnaire. Analysis was performed on consistency results using Hooper's and Rolling's inter-indexer consistency measures. A series of t-tests was used to judge the significance between consistency measure results. Findings - Results suggest that HIVE improves inter-indexing consistency. Working with HIVE increased consistency rates by 22 percent (Rolling's) and 25 percent (Hooper's) when selecting relevant terms from all vocabularies. A statistically significant difference exists between the assignment of free-text keywords and machine-aided keywords. Issues with homographs, disambiguation, vocabulary choice, and document structure were all identified as potential challenges. Research limitations/implications - Research limitations for this study can be found in the small number of vocabularies used for the study. Future research will include implementing HIVE into the Dryad Repository and studying its application in a repository system. Originality/value - This paper showcases several features used in HIVE system. By using traditional consistency measures to evaluate a semantic web technology, this paper emphasizes the link between traditional indexing and next generation machine-aided indexing (MAI) tools.
  7. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.00
    0.004457687 = product of:
      0.013373061 = sum of:
        0.013373061 = product of:
          0.026746122 = sum of:
            0.026746122 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
              0.026746122 = score(doc=2661,freq=2.0), product of:
                0.1728227 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049352113 = queryNorm
                0.15476047 = fieldWeight in 2661, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2661)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  8. Willis, C.; Greenberg, J.; White, H.: Analysis and synthesis of metadata goals for scientific data (2012) 0.00
    0.004457687 = product of:
      0.013373061 = sum of:
        0.013373061 = product of:
          0.026746122 = sum of:
            0.026746122 = weight(_text_:22 in 367) [ClassicSimilarity], result of:
              0.026746122 = score(doc=367,freq=2.0), product of:
                0.1728227 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049352113 = queryNorm
                0.15476047 = fieldWeight in 367, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=367)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The proliferation of discipline-specific metadata schemes contributes to artificial barriers that can impede interdisciplinary and transdisciplinary research. The authors considered this problem by examining the domains, objectives, and architectures of nine metadata schemes used to document scientific data in the physical, life, and social sciences. They used a mixed-methods content analysis and Greenberg's () metadata objectives, principles, domains, and architectural layout (MODAL) framework, and derived 22 metadata-related goals from textual content describing each metadata scheme. Relationships are identified between the domains (e.g., scientific discipline and type of data) and the categories of scheme objectives. For each strong correlation (>0.6), a Fisher's exact test for nonparametric data was used to determine significance (p < .05). Significant relationships were found between the domains and objectives of the schemes. Schemes describing observational data are more likely to have "scheme harmonization" (compatibility and interoperability with related schemes) as an objective; schemes with the objective "abstraction" (a conceptual model exists separate from the technical implementation) also have the objective "sufficiency" (the scheme defines a minimal amount of information to meet the needs of the community); and schemes with the objective "data publication" do not have the objective "element refinement." The analysis indicates that many metadata-driven goals expressed by communities are independent of scientific discipline or the type of data, although they are constrained by historical community practices and workflows as well as the technological environment at the time of scheme creation. The analysis reveals 11 fundamental metadata goals for metadata documenting scientific data in support of sharing research data across disciplines and domains. The authors report these results and highlight the need for more metadata-related research, particularly in the context of recent funding agency policy changes.