Search (60 results, page 1 of 3)

  • × theme_ss:"Wissensrepräsentation"
  1. Baião Salgado Silva, G.; Lima, G.Â. Borém de Oliveira: Using topic maps in establishing compatibility of semantically structured hypertext contents (2012) 0.06
    0.06371069 = product of:
      0.12742138 = sum of:
        0.12742138 = sum of:
          0.09316782 = weight(_text_:light in 633) [ClassicSimilarity], result of:
            0.09316782 = score(doc=633,freq=2.0), product of:
              0.2920221 = queryWeight, product of:
                5.7753086 = idf(docFreq=372, maxDocs=44218)
                0.050563898 = queryNorm
              0.31904373 = fieldWeight in 633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.7753086 = idf(docFreq=372, maxDocs=44218)
                0.0390625 = fieldNorm(doc=633)
          0.034253553 = weight(_text_:22 in 633) [ClassicSimilarity], result of:
            0.034253553 = score(doc=633,freq=2.0), product of:
              0.17706616 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.050563898 = queryNorm
              0.19345059 = fieldWeight in 633, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=633)
      0.5 = coord(1/2)
    
    Abstract
    Considering the characteristics of hypertext systems and problems such as cognitive overload and the disorientation of users, this project studies subject hypertext documents that have undergone conceptual structuring using facets for content representation and improvement of information retrieval during navigation. The main objective was to assess the possibility of the application of topic map technology for automating the compatibilization process of these structures. For this purpose, two dissertations from the UFMG Information Science Post-Graduation Program were adopted as samples. Both dissertations had been duly analyzed and structured on the MHTX (Hypertextual Map) prototype database. The faceted structures of both dissertations, which had been represented in conceptual maps, were then converted into topic maps. It was then possible to use the merge property of the topic maps to promote the semantic interrelationship between the maps and, consequently, between the hypertextual information resources proper. The merge results were then analyzed in the light of theories dealing with the compatibilization of languages developed within the realm of information technology and librarianship from the 1960s on. The main goals accomplished were: (a) the detailed conceptualization of the merge process of the topic maps, considering the possible compatibilization levels and the applicability of this technology in the integration of faceted structures; and (b) the production of a detailed sequence of steps that may be used in the implementation of topic maps based on faceted structures.
    Date
    22. 2.2013 11:39:23
  2. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.04
    0.040154435 = product of:
      0.08030887 = sum of:
        0.08030887 = product of:
          0.24092661 = sum of:
            0.24092661 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.24092661 = score(doc=400,freq=2.0), product of:
                0.42868128 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050563898 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  3. Marcoux, Y.; Rizkallah, E.: Knowledge organization in the light of intertextual semantics : a natural-language analysis of controlled vocabularies (2008) 0.03
    0.027950348 = product of:
      0.055900697 = sum of:
        0.055900697 = product of:
          0.11180139 = sum of:
            0.11180139 = weight(_text_:light in 2241) [ClassicSimilarity], result of:
              0.11180139 = score(doc=2241,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3828525 = fieldWeight in 2241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2241)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  4. Suchanek, F.M.; Kasneci, G.; Weikum, G.: YAGO: a core of semantic knowledge unifying WordNet and Wikipedia (2007) 0.03
    0.027950348 = product of:
      0.055900697 = sum of:
        0.055900697 = product of:
          0.11180139 = sum of:
            0.11180139 = weight(_text_:light in 3403) [ClassicSimilarity], result of:
              0.11180139 = score(doc=3403,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3828525 = fieldWeight in 3403, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3403)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present YAGO, a light-weight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from Wikipedia and unified with WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships - and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information extraction techniques.
  5. Halpin, H.; Hayes, P.J.; McCusker, J.P.; McGuinness, D.L.; Thompson, H.S.: When owl:sameAs isn't the same : an analysis of identity in linked data (2010) 0.03
    0.027950348 = product of:
      0.055900697 = sum of:
        0.055900697 = product of:
          0.11180139 = sum of:
            0.11180139 = weight(_text_:light in 4703) [ClassicSimilarity], result of:
              0.11180139 = score(doc=4703,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3828525 = fieldWeight in 4703, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4703)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In Linked Data, the use of owl:sameAs is ubiquitous in interlinking data-sets. There is however, ongoing discussion about its use, and potential misuse, particularly with regards to interactions with inference. In fact, owl:sameAs can be viewed as encoding only one point on a scale of similarity, one that is often too strong for many of its current uses. We describe how referentially opaque contexts that do not allow inference exist, and then outline some varieties of referentially-opaque alternatives to owl:sameAs. Finally, we report on an empirical experiment over randomly selected owl:sameAs statements from the Web of data. This theoretical apparatus and experiment shed light upon how owl:sameAs is being used (and misused) on the Web of data.
  6. Zhang, L.: Linking information through function (2014) 0.03
    0.027950348 = product of:
      0.055900697 = sum of:
        0.055900697 = product of:
          0.11180139 = sum of:
            0.11180139 = weight(_text_:light in 1526) [ClassicSimilarity], result of:
              0.11180139 = score(doc=1526,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3828525 = fieldWeight in 1526, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1526)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    How information resources can be meaningfully related has been addressed in contexts from bibliographic entries to hyperlinks and, more recently, linked data. The genre structure and relationships among genre structure constituents shed new light on organizing information by purpose or function. This study examines the relationships among a set of functional units previously constructed in a taxonomy, each of which is a chunk of information embedded in a document and is distinct in terms of its communicative function. Through a card-sort study, relationships among functional units were identified with regard to their occurrence and function. The findings suggest that a group of functional units can be identified, collocated, and navigated by particular relationships. Understanding how functional units are related to each other is significant in linking information pieces in documents to support finding, aggregating, and navigating information in a distributed information environment.
  7. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.03
    0.026769627 = product of:
      0.053539254 = sum of:
        0.053539254 = product of:
          0.16061775 = sum of:
            0.16061775 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16061775 = score(doc=701,freq=2.0), product of:
                0.42868128 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  8. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.03
    0.026769627 = product of:
      0.053539254 = sum of:
        0.053539254 = product of:
          0.16061775 = sum of:
            0.16061775 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16061775 = score(doc=5820,freq=2.0), product of:
                0.42868128 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.050563898 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  9. Aparecida Moura, M.: Emerging discursive formations, folksonomy and social semantic information spaces (SSIS) : the contributions of the theory of integrative levels in the studies carried out by the Classification Research Group (CRG) (2014) 0.02
    0.023291955 = product of:
      0.04658391 = sum of:
        0.04658391 = product of:
          0.09316782 = sum of:
            0.09316782 = weight(_text_:light in 1395) [ClassicSimilarity], result of:
              0.09316782 = score(doc=1395,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.31904373 = fieldWeight in 1395, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1395)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper focuses on the discursive formations emerging from the Social Semantic Information Spaces (SSIS) in light of the concept of emergence in the theory of integrative levels. The study aims to identify the opportunities and challenges of incorporating epistemological considerations in the act of acquiring knowledge into the consolidation of knowledge organization and mediation processes and devices in the emergence of phenomena. The goal was to analyze the effects of that concept on the actions of a sample of researchers registered in an emerging research domain in SSIS in order to understand this type of indexing done by the users and communities as a classification of integrating levels. The methodology was established by triangulation through social network analysis, consensus analysis and archaeology of knowledge. It was possible to conclude that there is a collective effort to settle a semantic interoperability model for the labeling of contents based on best practices regarding the description of the objects shared in SSIS.
  10. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.02
    0.018633565 = product of:
      0.03726713 = sum of:
        0.03726713 = product of:
          0.07453426 = sum of:
            0.07453426 = weight(_text_:light in 2659) [ClassicSimilarity], result of:
              0.07453426 = score(doc=2659,freq=2.0), product of:
                0.2920221 = queryWeight, product of:
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.050563898 = queryNorm
                0.255235 = fieldWeight in 2659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7753086 = idf(docFreq=372, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
  11. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.02
    0.017126776 = product of:
      0.034253553 = sum of:
        0.034253553 = product of:
          0.068507105 = sum of:
            0.068507105 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.068507105 = score(doc=6089,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Pages
    S.11-22
  12. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.02
    0.017126776 = product of:
      0.034253553 = sum of:
        0.034253553 = product of:
          0.068507105 = sum of:
            0.068507105 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.068507105 = score(doc=5576,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13.12.2017 14:17:22
  13. Tudhope, D.; Hodge, G.: Terminology registries (2007) 0.02
    0.017126776 = product of:
      0.034253553 = sum of:
        0.034253553 = product of:
          0.068507105 = sum of:
            0.068507105 = weight(_text_:22 in 539) [ClassicSimilarity], result of:
              0.068507105 = score(doc=539,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.38690117 = fieldWeight in 539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=539)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26.12.2011 13:22:07
  14. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.02
    0.017126776 = product of:
      0.034253553 = sum of:
        0.034253553 = product of:
          0.068507105 = sum of:
            0.068507105 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.068507105 = score(doc=3406,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 5.2010 16:22:35
  15. Nielsen, M.: Neuronale Netze : Alpha Go - Computer lernen Intuition (2018) 0.02
    0.017126776 = product of:
      0.034253553 = sum of:
        0.034253553 = product of:
          0.068507105 = sum of:
            0.068507105 = weight(_text_:22 in 4523) [ClassicSimilarity], result of:
              0.068507105 = score(doc=4523,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.38690117 = fieldWeight in 4523, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4523)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Spektrum der Wissenschaft. 2018, H.1, S.22-27
  16. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.014532552 = product of:
      0.029065104 = sum of:
        0.029065104 = product of:
          0.05813021 = sum of:
            0.05813021 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.05813021 = score(doc=3355,freq=4.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  17. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.013701421 = product of:
      0.027402842 = sum of:
        0.027402842 = product of:
          0.054805685 = sum of:
            0.054805685 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.054805685 = score(doc=3376,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    31. 7.2010 16:58:22
  18. OWL Web Ontology Language Test Cases (2004) 0.01
    0.013701421 = product of:
      0.027402842 = sum of:
        0.027402842 = product of:
          0.054805685 = sum of:
            0.054805685 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.054805685 = score(doc=4685,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    14. 8.2011 13:33:22
  19. Giunchiglia, F.; Villafiorita, A.; Walsh, T.: Theories of abstraction (1997) 0.01
    0.013701421 = product of:
      0.027402842 = sum of:
        0.027402842 = product of:
          0.054805685 = sum of:
            0.054805685 = weight(_text_:22 in 4476) [ClassicSimilarity], result of:
              0.054805685 = score(doc=4476,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.30952093 = fieldWeight in 4476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4476)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1.10.2018 14:13:22
  20. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.01
    0.013701421 = product of:
      0.027402842 = sum of:
        0.027402842 = product of:
          0.054805685 = sum of:
            0.054805685 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.054805685 = score(doc=318,freq=2.0), product of:
                0.17706616 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050563898 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 5.2021 12:43:05

Authors

Years

Languages

  • e 48
  • d 11
  • sp 1
  • More… Less…

Types

  • a 45
  • el 15
  • x 5
  • m 2
  • n 1
  • r 1
  • More… Less…