Search (7 results, page 1 of 1)

  • × author_ss:"Bu, Y."
  1. Min, C.; Chen, Q.; Yan, E.; Bu, Y.; Sun, J.: Citation cascade and the evolution of topic relevance (2021) 0.06
    0.06411479 = product of:
      0.19234435 = sum of:
        0.19234435 = weight(_text_:citation in 62) [ClassicSimilarity], result of:
          0.19234435 = score(doc=62,freq=20.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.8191847 = fieldWeight in 62, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=62)
      0.33333334 = coord(1/3)
    
    Abstract
    Citation analysis, as a tool for quantitative studies of science, has long emphasized direct citation relations, leaving indirect or high-order citations overlooked. However, a series of early and recent studies demonstrate the existence of indirect and continuous citation impact across generations. Adding to the literature on high-order citations, we introduce the concept of a citation cascade: the constitution of a series of subsequent citing events initiated by a certain publication. We investigate this citation structure by analyzing more than 450,000 articles and over 6 million citation relations. We show that citation impact exists not only within the three generations documented in prior research but also in much further generations. Still, our experimental results indicate that two to four generations are generally adequate to trace a work's scientific impact. We also explore specific structural properties-such as depth, width, structural virality, and size-which account for differences among individual citation cascades. Finally, we find evidence that it is more important for a scientific work to inspire trans-domain (or indirectly related domain) works than to receive only intradomain recognition in order to achieve high impact. Our methods and findings can serve as a new tool for scientific evaluation and the modeling of scientific history.
    Theme
    Citation indexing
  2. Huang, S.; Qian, J.; Huang, Y.; Lu, W.; Bu, Y.; Yang, J.; Cheng, Q.: Disclosing the relationship between citation structure and future impact of a publication (2022) 0.06
    0.057346 = product of:
      0.172038 = sum of:
        0.172038 = weight(_text_:citation in 621) [ClassicSimilarity], result of:
          0.172038 = score(doc=621,freq=16.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.73270106 = fieldWeight in 621, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=621)
      0.33333334 = coord(1/3)
    
    Abstract
    Each section header of an article has its distinct communicative function. Citations from distinct sections may be different regarding citing motivation. In this paper, we grouped section headers with similar functions as a structural function and defined the distribution of citations from structural functions for a paper as its citation structure. We aim to explore the relationship between citation structure and the future impact of a publication and disclose the relative importance among citations from different structural functions. Specifically, we proposed two citation counting methods and a citation life cycle identification method, by which the regression data were built. Subsequently, we employed a ridge regression model to predict the future impact of the paper and analyzed the relative weights of regressors. Based on documents collected from the Association for Computational Linguistics Anthology website, our empirical experiments disclosed that functional structure features improve the prediction accuracy of citation count prediction and that there exist differences among citations from different structural functions. Specifically, at the early stage of citation lifetime, citations from Introduction and Method are particularly important for perceiving future impact of papers, and citations from Result and Conclusion are also vital. However, early accumulation of citations from the Background seems less important.
    Theme
    Citation indexing
  3. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.05
    0.05364227 = product of:
      0.1609268 = sum of:
        0.1609268 = weight(_text_:citation in 4445) [ClassicSimilarity], result of:
          0.1609268 = score(doc=4445,freq=14.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.685379 = fieldWeight in 4445, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4445)
      0.33333334 = coord(1/3)
    
    Abstract
    Citations in scientific literature are important both for tracking the historical development of scientific ideas and for forecasting research trends. However, the diffusion mechanisms underlying the citation process remain poorly understood, despite the frequent and longstanding use of citation counts for assessment purposes within the scientific community. Here, we extend the study of citation dynamics to a more general diffusion process to understand how citation growth associates with different diffusion patterns. Using a classic diffusion model, we quantify and illustrate specific diffusion mechanisms which have been proven to exert a significant impact on the growth and decay of citation counts. Experiments reveal a positive relation between the "low p and low q" pattern and high scientific impact. A sharp citation peak produced by rapid change of citation counts, however, has a negative effect on future impact. In addition, we have suggested a simple indicator, saturation level, to roughly estimate an individual article's current stage in the life cycle and its potential to attract future attention. The proposed approach can also be extended to higher levels of aggregation (e.g., individual scientists, journals, institutions), providing further insights into the practice of scientific evaluation.
  4. Huang, Y.; Bu, Y.; Ding, Y.; Lu, W.: From zero to one : a perspective on citing (2019) 0.04
    0.04214054 = product of:
      0.12642162 = sum of:
        0.12642162 = weight(_text_:citation in 5387) [ClassicSimilarity], result of:
          0.12642162 = score(doc=5387,freq=6.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.5384232 = fieldWeight in 5387, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=5387)
      0.33333334 = coord(1/3)
    
    Abstract
    This article investigates the lengths of time that publications with different numbers of citations take to receive their first citation (the beginning stage), and then compares the lengths of time to receive two or more citations after receiving the first citation (the accumulative stage) in the field of computer science. We find that in the beginning stage, that is, from zero to one citation, high-, medium-, and low-cited publications do not obviously exhibit different lengths of time. However, in the accumulative stage, that is, from one to N citations, highly cited publications begin to receive citations much more rapidly than medium- and low-cited publications. Moreover, as N increases, the difference in receiving new citations among high-, medium-, and low-cited publications increases quite significantly.
  5. Bu, Y.; Li, M.; Gu, W.; Huang, W.-b.: Topic diversity : a discipline scheme-free diversity measurement for journals (2021) 0.03
    0.028384823 = product of:
      0.08515447 = sum of:
        0.08515447 = weight(_text_:citation in 209) [ClassicSimilarity], result of:
          0.08515447 = score(doc=209,freq=2.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.3626685 = fieldWeight in 209, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0546875 = fieldNorm(doc=209)
      0.33333334 = coord(1/3)
    
    Abstract
    Scientometrics has many citation-based measurements for characterizing diversity, but most of these measurements depend on human-designed categories and the granularity of discipline classifications sometimes does not allow in-depth analysis. As such, the current paper proposes a new measurement for quantifying journals' diversity by utilizing the abstracts of scientific publications in journals, namely topic diversity (TD). Specifically, we apply a topic detection method to extract fine-grained topics, rather than disciplines, in journals and adapt certain diversity indicators to calculate TD. Since TD only needs as inputs abstracts of publications rather than citing relationships between publications, this measurement has the potential to be widely used in scientometrics.
  6. Liu, X.; Bu, Y.; Li, M.; Li, J.: Monodisciplinary collaboration disrupts science more than multidisciplinary collaboration (2024) 0.01
    0.01493918 = product of:
      0.044817537 = sum of:
        0.044817537 = product of:
          0.089635074 = sum of:
            0.089635074 = weight(_text_:index in 1202) [ClassicSimilarity], result of:
              0.089635074 = score(doc=1202,freq=4.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.40966535 = fieldWeight in 1202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Collaboration across disciplines is a critical form of scientific collaboration to solve complex problems and make innovative contributions. This study focuses on the association between multidisciplinary collaboration measured by coauthorship in publications and the disruption of publications measured by the Disruption (D) index. We used authors' affiliations as a proxy of the disciplines to which they belong and categorized an article into multidisciplinary collaboration or monodisciplinary collaboration. The D index quantifies the extent to which a study disrupts its predecessors. We selected 13 journals that publish articles in six disciplines from the Microsoft Academic Graph (MAG) database and then constructed regression models with fixed effects and estimated the relationship between the variables. The findings show that articles with monodisciplinary collaboration are more disruptive than those with multidisciplinary collaboration. Furthermore, we uncovered the mechanism of how monodisciplinary collaboration disrupts science more than multidisciplinary collaboration by exploring the references of the sampled publications.
  7. Xu, H.; Bu, Y.; Liu, M.; Zhang, C.; Sun, M.; Zhang, Y.; Meyer, E.; Salas, E.; Ding, Y.: Team power dynamics and team impact : new perspectives on scientific collaboration using career age as a proxy for team power (2022) 0.01
    0.008802996 = product of:
      0.026408987 = sum of:
        0.026408987 = product of:
          0.052817974 = sum of:
            0.052817974 = weight(_text_:index in 663) [ClassicSimilarity], result of:
              0.052817974 = score(doc=663,freq=2.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.24139762 = fieldWeight in 663, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=663)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all coauthors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of coauthors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.