Search (10 results, page 1 of 1)

  • × author_ss:"Järvelin, K."
  1. Järvelin, K.; Persson, O.: ¬The DCI index : discounted cumulated impact-based research evaluation (2008) 0.13
    0.13089678 = product of:
      0.19634515 = sum of:
        0.12164924 = weight(_text_:citation in 2694) [ClassicSimilarity], result of:
          0.12164924 = score(doc=2694,freq=8.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.5180979 = fieldWeight in 2694, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2694)
        0.0746959 = product of:
          0.1493918 = sum of:
            0.1493918 = weight(_text_:index in 2694) [ClassicSimilarity], result of:
              0.1493918 = score(doc=2694,freq=16.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.6827756 = fieldWeight in 2694, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2694)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Research evaluation is increasingly popular and important among research funding bodies and science policy makers. Various indicators have been proposed to evaluate the standing of individual scientists, institutions, journals, or countries. A simple and popular one among the indicators is the h-index, the Hirsch index (Hirsch 2005), which is an indicator for lifetime achievement of a scholar. Several other indicators have been proposed to complement or balance the h-index. However, these indicators have no conception of aging. The AR-index (Jin et al. 2007) incorporates aging but divides the received citation counts by the raw age of the publication. Consequently, the decay of a publication is very steep and insensitive to disciplinary differences. In addition, we believe that a publication becomes outdated only when it is no longer cited, not because of its age. Finally, all indicators treat citations as equally material when one might reasonably think that a citation from a heavily cited publication should weigh more than a citation froma non-cited or little-cited publication.We propose a new indicator, the Discounted Cumulated Impact (DCI) index, which devalues old citations in a smooth way. It rewards an author for receiving new citations even if the publication is old. Further, it allows weighting of the citations by the citation weight of the citing publication. DCI can be used to calculate research performance on the basis of the h-core of a scholar or any other publication data.
    Content
    Erratum in: Järvelin, K., O. Persson: The DCI-index: discounted cumulated impact-based research evaluation. Erratum re. In: Journal of the American Society for Information Science and Technology. 59(2008) no.14, S.2350-2352.
    Object
    DCI index
  2. Järvelin, K.; Persson, O.: ¬The DCI-index : discounted cumulated impact-based research evaluation (2008) 0.02
    0.024395581 = product of:
      0.07318674 = sum of:
        0.07318674 = product of:
          0.14637348 = sum of:
            0.14637348 = weight(_text_:index in 2332) [ClassicSimilarity], result of:
              0.14637348 = score(doc=2332,freq=6.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.6689808 = fieldWeight in 2332, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2332)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The article by K. Järvelin & O. Persson published in JASIST 59(9), The DCI-Index: Discounted Cumulated Impact-Based Research Evaluation, (pp. 1433-1440) contains an unfortunate error in one of its formulas, Equation 3. The present paper gives the correction and an example of impact analysis based on the corrected formula.
    Object
    h-index
  3. Ahlgren, P.; Järvelin, K.: Measuring impact of twelve information scientists using the DCI index (2010) 0.02
    0.023620918 = product of:
      0.070862755 = sum of:
        0.070862755 = product of:
          0.14172551 = sum of:
            0.14172551 = weight(_text_:index in 3593) [ClassicSimilarity], result of:
              0.14172551 = score(doc=3593,freq=10.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.64773786 = fieldWeight in 3593, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3593)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Discounted Cumulated Impact (DCI) index has recently been proposed for research evaluation. In the present work an earlier dataset by Cronin and Meho (2007) is reanalyzed, with the aim of exemplifying the salient features of the DCI index. We apply the index on, and compare our results to, the outcomes of the Cronin-Meho (2007) study. Both authors and their top publications are used as units of analysis, which suggests that, by adjusting the parameters of evaluation according to the needs of research evaluation, the DCI index delivers data on an author's (or publication's) lifetime impact or current impact at the time of evaluation on an author's (or publication's) capability of inviting citations from highly cited later publications as an indication of impact, and on the relative impact across a set of authors (or publications) over their lifetime or currently.
  4. Järvelin, K.; Ingwersen, P.; Niemi, T.: ¬A user-oriented interface for generalised informetric analysis based on applying advanced data modelling techniques (2000) 0.02
    0.020274874 = product of:
      0.06082462 = sum of:
        0.06082462 = weight(_text_:citation in 4545) [ClassicSimilarity], result of:
          0.06082462 = score(doc=4545,freq=2.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.25904894 = fieldWeight in 4545, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4545)
      0.33333334 = coord(1/3)
    
    Abstract
    This article presents a novel user-oriented interface for generalised informetric analysis and demonstrates how informetric calculations can easily and declaratively be specified through advanced data modelling techniques. The interface is declarative and at a high level. Therefore it is easy to use, flexible and extensible. It enables end users to perform basic informetric ad hoc calculations easily and often with much less effort than in contemporary online retrieval systems. It also provides several fruitful generalisations of typical informetric measurements like impact factors. These are based on substituting traditional foci of analysis, for instance journals, by other object types, such as authors, organisations or countries. In the interface, bibliographic data are modelled as complex objects (non-first normal form relations) and terminological and citation networks involving transitive relationships are modelled as binary relations for deductive processing. The interface is flexible, because it makes it easy to switch focus between various object types for informetric calculations, e.g. from authors to institutions. Moreover, it is demonstrated that all informetric data can easily be broken down by criteria that foster advanced analysis, e.g. by years or content-bearing attributes. Such modelling allows flexible data aggregation along many dimensions. These salient features emerge from the query interface's general data restructuring and aggregation capabilities combined with transitive processing capabilities. The features are illustrated by means of sample queries and results in the article.
  5. Vakkari, P.; Chang, Y.-W.; Järvelin, K.: Disciplinary contributions to research topics and methodology in Library and Information Science : leading to fragmentation? (2022) 0.02
    0.020274874 = product of:
      0.06082462 = sum of:
        0.06082462 = weight(_text_:citation in 767) [ClassicSimilarity], result of:
          0.06082462 = score(doc=767,freq=2.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.25904894 = fieldWeight in 767, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=767)
      0.33333334 = coord(1/3)
    
    Abstract
    The study analyses contributions to Library and Information Science (LIS) by researchers representing various disciplines. How are such contributions associated with the choice of research topics and methodology? The study employs a quantitative content analysis of articles published in 31 scholarly LIS journals in 2015. Each article is seen as a contribution to LIS by the authors' disciplines, which are inferred from their affiliations. The unit of analysis is the article-discipline pair. Of the contribution instances, the share of LIS is one third. Computer Science contributes one fifth and Business and Economics one sixth. The latter disciplines dominate the contributions in information retrieval, information seeking, and scientific communication indicating strong influences in LIS. Correspondence analysis reveals three clusters of research, one focusing on traditional LIS with contributions from LIS and Humanities and survey-type research; another on information retrieval with contributions from Computer Science and experimental research; and the third on scientific communication with contributions from Natural Sciences and Medicine and citation analytic research. The strong differentiation of scholarly contributions in LIS hints to the fragmentation of LIS as a discipline.
  6. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.01
    0.0067839995 = product of:
      0.020351999 = sum of:
        0.020351999 = product of:
          0.040703997 = sum of:
            0.040703997 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.040703997 = score(doc=2230,freq=2.0), product of:
                0.17534193 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050071523 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  7. Saastamoinen, M.; Järvelin, K.: Search task features in work tasks of varying types and complexity (2017) 0.01
    0.0067839995 = product of:
      0.020351999 = sum of:
        0.020351999 = product of:
          0.040703997 = sum of:
            0.040703997 = weight(_text_:22 in 3589) [ClassicSimilarity], result of:
              0.040703997 = score(doc=3589,freq=2.0), product of:
                0.17534193 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050071523 = queryNorm
                0.23214069 = fieldWeight in 3589, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3589)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Information searching in practice seldom is an end in itself. In work, work task (WT) performance forms the context, which information searching should serve. Therefore, information retrieval (IR) systems development/evaluation should take the WT context into account. The present paper analyzes how WT features: task complexity and task types, affect information searching in authentic work: the types of information needs, search processes, and search media. We collected data on 22 information professionals in authentic work situations in three organization types: city administration, universities, and companies. The data comprise 286 WTs and 420 search tasks (STs). The data include transaction logs, video recordings, daily questionnaires, interviews. and observation. The data were analyzed quantitatively. Even if the participants used a range of search media, most STs were simple throughout the data, and up to 42% of WTs did not include searching. WT's effects on STs are not straightforward: different WT types react differently to WT complexity. Due to the simplicity of authentic searching, the WT/ST types in interactive IR experiments should be reconsidered.
  8. Näppilä, T.; Järvelin, K.; Niemi, T.: ¬A tool for data cube construction from structurally heterogeneous XML documents (2008) 0.01
    0.005653334 = product of:
      0.01696 = sum of:
        0.01696 = product of:
          0.03392 = sum of:
            0.03392 = weight(_text_:22 in 1369) [ClassicSimilarity], result of:
              0.03392 = score(doc=1369,freq=2.0), product of:
                0.17534193 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050071523 = queryNorm
                0.19345059 = fieldWeight in 1369, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1369)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    9. 2.2008 17:22:42
  9. Vakkari, P.; Järvelin, K.; Chang, Y.-W.: ¬The association of disciplinary background with the evolution of topics and methods in Library and Information Science research 1995-2015 (2023) 0.01
    0.005653334 = product of:
      0.01696 = sum of:
        0.01696 = product of:
          0.03392 = sum of:
            0.03392 = weight(_text_:22 in 998) [ClassicSimilarity], result of:
              0.03392 = score(doc=998,freq=2.0), product of:
                0.17534193 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050071523 = queryNorm
                0.19345059 = fieldWeight in 998, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=998)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 6.2023 18:15:06
  10. Ingwersen, P.; Järvelin, K.: ¬The turn : integration of information seeking and retrieval in context (2005) 0.00
    0.004401498 = product of:
      0.013204494 = sum of:
        0.013204494 = product of:
          0.026408987 = sum of:
            0.026408987 = weight(_text_:index in 1323) [ClassicSimilarity], result of:
              0.026408987 = score(doc=1323,freq=2.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.12069881 = fieldWeight in 1323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1323)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Turn analyzes the research of information seeking and retrieval (IS&R) and proposes a new direction of integrating research in these two areas: the fields should turn off their separate and narrow paths and construct a new avenue of research. An essential direction for this avenue is context as given in the subtitle Integration of Information Seeking and Retrieval in Context. Other essential themes in the book include: IS&R research models, frameworks and theories; search and works tasks and situations in context; interaction between humans and machines; information acquisition, relevance and information use; research design and methodology based on a structured set of explicit variables - all set into the holistic cognitive approach. The present monograph invites the reader into a construction project - there is much research to do for a contextual understanding of IS&R. The Turn represents a wide-ranging perspective of IS&R by providing a novel unique research framework, covering both individual and social aspects of information behavior, including the generation, searching, retrieval and use of information. Regarding traditional laboratory information retrieval research, the monograph proposes the extension of research toward actors, search and work tasks, IR interaction and utility of information. Regarding traditional information seeking research, it proposes the extension toward information access technology and work task contexts. The Turn is the first synthesis of research in the broad area of IS&R ranging from systems oriented laboratory IR research to social science oriented information seeking studies. TOC:Introduction.- The Cognitive Framework for Information.- The Development of Information Seeking Research.- Systems-Oriented Information Retrieval.- Cognitive and User-Oriented Information Retrieval.- The Integrated IS&R Research Framework.- Implications of the Cognitive Framework for IS&R.- Towards a Research Program.- Conclusion.- Definitions.- References.- Index.