Search (7 results, page 1 of 1)

  • × author_ss:"Wolfram, D."
  1. Ajiferuke, I.; Lu, K.; Wolfram, D.: ¬A comparison of citer and citation-based measure outcomes for multiple disciplines (2010) 0.13
    0.13275944 = product of:
      0.19913915 = sum of:
        0.17878714 = weight(_text_:citation in 4000) [ClassicSimilarity], result of:
          0.17878714 = score(doc=4000,freq=12.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.7614453 = fieldWeight in 4000, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=4000)
        0.020351999 = product of:
          0.040703997 = sum of:
            0.040703997 = weight(_text_:22 in 4000) [ClassicSimilarity], result of:
              0.040703997 = score(doc=4000,freq=2.0), product of:
                0.17534193 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050071523 = queryNorm
                0.23214069 = fieldWeight in 4000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4000)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Author research impact was examined based on citer analysis (the number of citers as opposed to the number of citations) for 90 highly cited authors grouped into three broad subject areas. Citer-based outcome measures were also compared with more traditional citation-based measures for levels of association. The authors found that there are significant differences in citer-based outcomes among the three broad subject areas examined and that there is a high degree of correlation between citer and citation-based measures for all measures compared, except for two outcomes calculated for the social sciences. Citer-based measures do produce slightly different rankings of authors based on citer counts when compared to more traditional citation counts. Examples are provided. Citation measures may not adequately address the influence, or reach, of an author because citations usually do not address the origin of the citation beyond self-citations.
    Date
    28. 9.2010 12:54:22
  2. Park, H.; You, S.; Wolfram, D.: Informal data citation for data sharing and reuse is more common than formal data citation in biomedical fields (2018) 0.13
    0.132298 = product of:
      0.19844699 = sum of:
        0.172038 = weight(_text_:citation in 4544) [ClassicSimilarity], result of:
          0.172038 = score(doc=4544,freq=16.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.73270106 = fieldWeight in 4544, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4544)
        0.026408987 = product of:
          0.052817974 = sum of:
            0.052817974 = weight(_text_:index in 4544) [ClassicSimilarity], result of:
              0.052817974 = score(doc=4544,freq=2.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.24139762 = fieldWeight in 4544, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4544)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Data citation, where products of research such as data sets, software, and tissue cultures are shared and acknowledged, is becoming more common in the era of Open Science. Currently, the practice of formal data citation-where data references are included alongside bibliographic references in the reference section of a publication-is uncommon. We examine the prevalence of data citation, documenting data sharing and reuse, in a sample of full text articles from the biological/biomedical sciences, the fields with the most public data sets available documented by the Data Citation Index (DCI). We develop a method that combines automated text extraction with human assessment for revealing candidate occurrences of data sharing and reuse by using terms that are most likely to indicate their occurrence. The analysis reveals that informal data citation in the main text of articles is far more common than formal data citations in the references of articles. As a result, data sharers do not receive documented credit for their data contributions in a similar way as authors do for their research articles because informal data citations are not recorded in sources such as the DCI. Ongoing challenges for the study of data citation are also outlined.
  3. Castanha, R.C.G.; Wolfram, D.: ¬The domain of knowledge organization : a bibliometric analysis of prolific authors and their intellectual space (2018) 0.09
    0.09240617 = product of:
      0.13860925 = sum of:
        0.12164924 = weight(_text_:citation in 4150) [ClassicSimilarity], result of:
          0.12164924 = score(doc=4150,freq=8.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.5180979 = fieldWeight in 4150, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4150)
        0.01696 = product of:
          0.03392 = sum of:
            0.03392 = weight(_text_:22 in 4150) [ClassicSimilarity], result of:
              0.03392 = score(doc=4150,freq=2.0), product of:
                0.17534193 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050071523 = queryNorm
                0.19345059 = fieldWeight in 4150, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4150)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The domain of knowledge organization (KO) represents a foundational area of information science. One way to better understand the intellectual structure of the KO domain is to apply bibliometric methods to key contributors to the literature. This study analyzes the most prolific contributing authors to the journal Knowledge Organization, the sources they cite and the citations they receive for the period 1993 to 2016. The analyses were conducted using visualization outcomes of citation, co-citation and author bibliographic coupling analysis to reveal theoretical points of reference among authors and the most prominent research themes that constitute this scientific community. Birger Hjørland was the most cited author, and was situated at or near the middle of each of the maps based on different citation relationships. The proximities between authors resulting from the different citation relationships demonstrate how authors situate themselves intellectually through the citations they give and how other authors situate them through the citations received. There is a consistent core of theoretical references as well among the most productive authors. We observed a close network of scholarly communication between the authors cited in this core, which indicates the actual role of the journal Knowledge Organization as a space for knowledge construction in the area of knowledge organization.
    Source
    Knowledge organization. 45(2018) no.1, S.13-22
  4. Wolfram, D.: ¬The power to influence : an informetric analysis of the works of Hope Olson (2016) 0.06
    0.059595715 = product of:
      0.17878714 = sum of:
        0.17878714 = weight(_text_:citation in 3170) [ClassicSimilarity], result of:
          0.17878714 = score(doc=3170,freq=12.0), product of:
            0.23479973 = queryWeight, product of:
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.050071523 = queryNorm
            0.7614453 = fieldWeight in 3170, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.6892867 = idf(docFreq=1104, maxDocs=44218)
              0.046875 = fieldNorm(doc=3170)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper examines the influence of the works of Hope A. Olson by conducting an ego-centric informetric analysis of her published works. Publication and citation data were collected from Google Scholar and the Thomson Reuters Web of Science. Classic informetrics techniques were applied to the datasets including co-authorship analysis, citer analysis, citation and co-citation analysis and text-based analysis. Co-citation and text-based data were analyzed and visualized using VOSviewer and CiteSpace, respectively. The analysis of her citation identity reveals how Dr. Olson situates her own research within the knowledge landscape while the analysis of her citation image reveals how others have situated her work in relation to the authors with whom she has been co-cited. This reflection of Dr. Olson's research contributions reveals the influence of her scholarship not only on knowledge organization but other areas of library and information science and allied disciplines.
  5. Wolfram, D.; Zhang, J.: ¬The influence of indexing practices and weighting algorithms on document spaces (2008) 0.01
    0.010563595 = product of:
      0.031690784 = sum of:
        0.031690784 = product of:
          0.06338157 = sum of:
            0.06338157 = weight(_text_:index in 1963) [ClassicSimilarity], result of:
              0.06338157 = score(doc=1963,freq=2.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.28967714 = fieldWeight in 1963, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1963)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Index modeling and computer simulation techniques are used to examine the influence of indexing frequency distributions, indexing exhaustivity distributions, and three weighting methods on hypothetical document spaces in a vector-based information retrieval (IR) system. The way documents are indexed plays an important role in retrieval. The authors demonstrate the influence of different indexing characteristics on document space density (DSD) changes and document space discriminative capacity for IR. Document environments that contain a relatively higher percentage of infrequently occurring terms provide lower density outcomes than do environments where a higher percentage of frequently occurring terms exists. Different indexing exhaustivity levels, however, have little influence on the document space densities. A weighting algorithm that favors higher weights for infrequently occurring terms results in the lowest overall document space densities, which allows documents to be more readily differentiated from one another. This in turn can positively influence IR. The authors also discuss the influence on outcomes using two methods of normalization of term weights (i.e., means and ranges) for the different weighting methods.
  6. Dimitroff, A.; Wolfram, D.: Searcher response in a hypertext-based bibliographic information retrieval system (1995) 0.01
    0.009045334 = product of:
      0.027136 = sum of:
        0.027136 = product of:
          0.054272 = sum of:
            0.054272 = weight(_text_:22 in 187) [ClassicSimilarity], result of:
              0.054272 = score(doc=187,freq=2.0), product of:
                0.17534193 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050071523 = queryNorm
                0.30952093 = fieldWeight in 187, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=187)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Journal of the American Society for Information Science. 46(1995) no.1, S.22-29
  7. Wolfram, D.; Zhang, J.: ¬An investigation of the influence of indexing exhaustivity and term distributions on a document space (2002) 0.01
    0.008802996 = product of:
      0.026408987 = sum of:
        0.026408987 = product of:
          0.052817974 = sum of:
            0.052817974 = weight(_text_:index in 5238) [ClassicSimilarity], result of:
              0.052817974 = score(doc=5238,freq=2.0), product of:
                0.21880072 = queryWeight, product of:
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.050071523 = queryNorm
                0.24139762 = fieldWeight in 5238, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.369764 = idf(docFreq=1520, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5238)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Wolfram and Zhang are interested in the effect of different indexing exhaustivity, by which they mean the number of terms chosen, and of different index term distributions and different term weighting methods on the resulting document cluster organization. The Distance Angle Retrieval Environment, DARE, which provides a two dimensional display of retrieved documents was used to represent the document clusters based upon a document's distance from the searcher's main interest, and on the angle formed by the document, a point representing a minor interest, and the point representing the main interest. If the centroid and the origin of the document space are assigned as major and minor points the average distance between documents and the centroid can be measured providing an indication of cluster organization. in the form of a size normalized similarity measure. Using 500 records from NTIS and nine models created by intersecting low, observed, and high exhaustivity levels (based upon a negative binomial distribution) with shallow, observed, and steep term distributions (based upon a Zipf distribution) simulation runs were preformed using inverse document frequency, inter-document term frequency, and inverse document frequency based upon both inter and intra-document frequencies. Low exhaustivity and shallow distributions result in a more dense document space and less effective retrieval. High exhaustivity and steeper distributions result in a more diffuse space.