Search (262 results, page 1 of 14)

  • × theme_ss:"Suchtaktik"
  1. Vakkari, P.; Huuskonen, S.: Search effort degrades search output but improves task outcome (2012) 0.07
    0.07353778 = product of:
      0.12256297 = sum of:
        0.07213905 = weight(_text_:list in 46) [ClassicSimilarity], result of:
          0.07213905 = score(doc=46,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 46, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=46)
        0.016080966 = weight(_text_:of in 46) [ClassicSimilarity], result of:
          0.016080966 = score(doc=46,freq=12.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.21160212 = fieldWeight in 46, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=46)
        0.034342952 = weight(_text_:subject in 46) [ClassicSimilarity], result of:
          0.034342952 = score(doc=46,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.19758089 = fieldWeight in 46, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=46)
      0.6 = coord(3/5)
    
    Abstract
    We analyzed how effort in searching is associated with search output and task outcome. In a field study, we examined how students' search effort for an assigned learning task was associated with precision and relative recall, and how this was associated to the quality of learning outcome. The study subjects were 41 medical students writing essays for a class in medicine. Searching in Medline was part of their assignment. The data comprised students' search logs in Medline, their assessment of the usefulness of references retrieved, a questionnaire concerning the search process, and evaluation scores of the essays given by the teachers. Pearson correlation was calculated for answering the research questions. Finally, a path model for predicting task outcome was built. We found that effort in the search process degraded precision but improved task outcome. There were two major mechanisms reducing precision while enhancing task outcome. Effort in expanding Medical Subject Heading (MeSH) terms within search sessions and effort in assessing and exploring documents in the result list between the sessions degraded precision, but led to better task outcome. Thus, human effort compensated bad retrieval results on the way to good task outcome. Findings suggest that traditional effectiveness measures in information retrieval should be complemented with evaluation measures for search process and outcome.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.4, S.657-670
  2. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.06
    0.064760454 = product of:
      0.10793408 = sum of:
        0.014679846 = weight(_text_:of in 4573) [ClassicSimilarity], result of:
          0.014679846 = score(doc=4573,freq=10.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.19316542 = fieldWeight in 4573, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.07679317 = weight(_text_:subject in 4573) [ClassicSimilarity], result of:
          0.07679317 = score(doc=4573,freq=10.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4418043 = fieldWeight in 4573, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.016461061 = product of:
          0.032922123 = sum of:
            0.032922123 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.032922123 = score(doc=4573,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This study explores how user subject knowledge influences search task processes and outcomes, as well as how search behavior is influenced by subject-oriented information visualization (IV) tools. To enable integrated searches, the proposed WikiMap + integrates search functions and IV tools (i.e., a topic network and hierarchical topic tree) and gathers information from Wikipedia pages and Google Search results. To evaluate the effectiveness of the proposed interfaces, we design subject-oriented tasks and adopt extended evaluation measures. We recruited 48 novices and 48 knowledgeable users, that is, intermediates, for the evaluation. Our results show that novices using the proposed interface demonstrate better search performance than intermediates using Wikipedia. We therefore conclude that our tools help close the gap between novices and intermediates in information searches. The results also show that intermediates can take advantage of the search tool by leveraging the IV tools to browse subtopics, and formulate better queries with less effort. We conclude that embedding the IV and the search tools in the interface can result in different search behavior but improved task performance. We provide implications to design search systems to include IV features adapted to user levels of subject knowledge to help them achieve better task performance.
    Date
    9.12.2018 16:22:25
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.12, S.1428-1445
  3. Kaptein, R.; Kamps, J.: Explicit extraction of topical context (2011) 0.06
    0.064659014 = product of:
      0.16164753 = sum of:
        0.1442781 = weight(_text_:list in 4630) [ClassicSimilarity], result of:
          0.1442781 = score(doc=4630,freq=8.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.5727186 = fieldWeight in 4630, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4630)
        0.017369429 = weight(_text_:of in 4630) [ClassicSimilarity], result of:
          0.017369429 = score(doc=4630,freq=14.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.22855641 = fieldWeight in 4630, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4630)
      0.4 = coord(2/5)
    
    Abstract
    This article studies one of the main bottlenecks in providing more effective information access: the poverty on the query end. We explore whether users can classify keyword queries into categories from the DMOZ directory on different levels and whether this topical context can help retrieval performance. We have conducted a user study to let participants classify queries into DMOZ categories, either by freely searching the directory or by selection from a list of suggestions. Results of the study show that DMOZ categories are suitable for topic categorization. Both free search and list selection can be used to elicit topical context. Free search leads to more specific categories than the list selections. Participants in our study show moderate agreement on the categories they select, but broad agreement on the higher levels of chosen categories. The free search categories significantly improve retrieval effectiveness. The more general list selection categories and the top-level categories do not lead to significant improvements. Combining topical context with blind relevance feedback leads to better results than applying either of them separately. We conclude that DMOZ is a suitable resource for interacting with users on topical categories applicable to their query, and can lead to better search results.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.8, S.1548-1563
  4. Lee, H.-J.; Muresan, G.: Mediated Web information retrieval for a complex searching task (2009) 0.06
    0.05988573 = product of:
      0.14971432 = sum of:
        0.12242402 = weight(_text_:list in 2937) [ClassicSimilarity], result of:
          0.12242402 = score(doc=2937,freq=4.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.48596787 = fieldWeight in 2937, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.046875 = fieldNorm(doc=2937)
        0.027290303 = weight(_text_:of in 2937) [ClassicSimilarity], result of:
          0.027290303 = score(doc=2937,freq=24.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3591007 = fieldWeight in 2937, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2937)
      0.4 = coord(2/5)
    
    Abstract
    The goal of this study is to understand whether providing a search intermediary familiar with a problem domain and its topical structure would support a user's Web searching tasks, especially complicated tasks with multifaceted topics, and whether the order of searching tasks or system usage influences their successful completion. This study investigates the effect of two factors, the interaction mode and the display layout, on the three main measures of the user's Web searching behaviors: effectiveness, efficiency, and usability. Two interaction modes are compared, mediation via a domain-specific document collection versus nonmediated search, and two display layouts, a combination of browsing-supporting hierarchic display and ranked list of results versus the simple linear list of search results. The results are analyzed in the Flow theory point of view; they were analyzed by order of the tasks and system usage order. The findings of this study contribute to a better understanding of how the mediation system and/or the combined display support a Web information user.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1372-1391
  5. Byström, K.: Information seekers in context : an analysis of the 'doer' in INSU studies (1999) 0.05
    0.054273345 = product of:
      0.09045557 = sum of:
        0.02542624 = weight(_text_:of in 297) [ClassicSimilarity], result of:
          0.02542624 = score(doc=297,freq=30.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.33457235 = fieldWeight in 297, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=297)
        0.048568267 = weight(_text_:subject in 297) [ClassicSimilarity], result of:
          0.048568267 = score(doc=297,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27942157 = fieldWeight in 297, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=297)
        0.016461061 = product of:
          0.032922123 = sum of:
            0.032922123 = weight(_text_:22 in 297) [ClassicSimilarity], result of:
              0.032922123 = score(doc=297,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.19345059 = fieldWeight in 297, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=297)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    In information needs, seeking and use (INSU) research, individuals have most commonly been perceived as users (e.g., Kuhlthau, 1991; Dervin & Nilan, 1986; Dervin, 1989; Belkin, 1980). The concept user originates from the user of libraries and other information services and information systems. Over the years the scope of the concept has become wider and it is nowadays often understood in the sense of seekers of information (e.g., Wilson, 1981; Marchionini, 1995) and users of information (e.g., Streatfield, 1983). Nevertheless, the concept has remained ambiguous by being on the one hand universal and on the other hand extremely specific. The purpose of this paper is to map and evaluate views on people whose information behaviour has been in one way or another the core of our research area. The goal is to shed some light on various relationships between the different aspects of doers in INSU studies. The paper is inspired by Dervin's (1997) analysis of context where she identified among other themes the nature of subject by contrasting a `transcendental individual' with a `decentered subject', and Talja's (1997) presentation about constituting `information' and `user' from the discourse analytic viewpoint as opposed to the cognitive viewpoint. Instead of the metatheoretical approach applied by Dervin and Talja, a more concrete approach is valid in the present analysis where no direct arguments for or against the underlying metatheories are itemised. The focus is on doers in INSU studies leaving other, even closely-related concepts (i.e., information, information seeking, knowledge etc.), outside the scope of the paper.
    Date
    22. 3.2002 9:55:52
    Source
    Exploring the contexts of information behaviour: Proceedings of the 2nd International Conference on Research in Information Needs, Seeking and Use in Different Contexts, Sheffield, UK, 1998. Ed. by D.K. Wilson u. D.K. Allen
  6. Toms, E.G.: What motivates the browser? (1999) 0.05
    0.05388991 = product of:
      0.08981652 = sum of:
        0.057711232 = weight(_text_:list in 292) [ClassicSimilarity], result of:
          0.057711232 = score(doc=292,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.22908744 = fieldWeight in 292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.03125 = fieldNorm(doc=292)
        0.018936433 = weight(_text_:of in 292) [ClassicSimilarity], result of:
          0.018936433 = score(doc=292,freq=26.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2491759 = fieldWeight in 292, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=292)
        0.013168849 = product of:
          0.026337698 = sum of:
            0.026337698 = weight(_text_:22 in 292) [ClassicSimilarity], result of:
              0.026337698 = score(doc=292,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.15476047 = fieldWeight in 292, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=292)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Browsing is considered to be unstructured and human-driven, although not a cognitively intensive process. It is conducted using systems that facilitate considerable user-system interactivity. Cued by the content, people immerse themselves in a topic of interest and meander from topic to topic while concurrently recognising interesting and informative information en route. They seem to seek and gather information in a purposeless, illogical and indiscriminate manner. Typical examples of these ostensibly random acts are scanning a non-fiction book, examining the morning newspaper, perusing the contents of a business report and scavenging the World Wide Web. Often the result is the acquisition of new information, the rejection or confirmation of an idea, or the genesis of new, perhaps not-wholly-formed thoughts about a topic. Noteworthy about this approach is that people explore information without having consciously structured queries or explicit goals. This form of passive information interaction behaviour is defined as acquiring and gathering information while scanning an information space without a specific goal in mind (Waterworth & Chignell, 1991; Toms, 1997), and for the purposes of this study, is called browsing. Traditionally, browsing is thought of in two ways: as a physical process - the action taken when one scans a list, a document, or a set of linked information nodes (e.g., Fox & Palay, 1979; Thompson & Croft, 1989; Ellis, 1989), and as a conceptual process, information seeking when the goal is ill-defined (e.g., Cove & Walsh, 1987). Browsing is also combined with searching in an integrated information-seeking process for retrieving information (e.g., Ellis, 1989; Belkin, Marchetti & Cool, 1993; Marchionini, 1995; Chang, 1995). Each of these cases focuses primarily on seeking information when the objective ranges from fuzzy to explicit.
    Date
    22. 3.2002 9:44:47
    Source
    Exploring the contexts of information behaviour: Proceedings of the 2nd International Conference on Research in Information Needs, Seeking and Use in Different Contexts, 13-15 August 1998, Sheffield, UK. Ed. by D.K. Wilson u. D.K. Allen
  7. Renugadevi, S.; Geetha, T.V.; Gayathiri, R.L.; Prathyusha, S.; Kaviya, T.: Collaborative search using an implicitly formed academic network (2014) 0.05
    0.052979443 = product of:
      0.088299066 = sum of:
        0.057711232 = weight(_text_:list in 1628) [ClassicSimilarity], result of:
          0.057711232 = score(doc=1628,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.22908744 = fieldWeight in 1628, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.03125 = fieldNorm(doc=1628)
        0.017418984 = weight(_text_:of in 1628) [ClassicSimilarity], result of:
          0.017418984 = score(doc=1628,freq=22.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2292085 = fieldWeight in 1628, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1628)
        0.013168849 = product of:
          0.026337698 = sum of:
            0.026337698 = weight(_text_:22 in 1628) [ClassicSimilarity], result of:
              0.026337698 = score(doc=1628,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.15476047 = fieldWeight in 1628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1628)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Purpose - The purpose of this paper is to propose the Collaborative Search System that attempts to achieve collaboration by implicitly identifying and reflecting search behaviour of collaborators in an academic network that is automatically and dynamically formed. By using the constructed Collaborative Hit Matrix (CHM), results are obtained that are based on the search behaviour and earned preferences of specialist communities of researchers, which are relevant to the user's need and reduce the time spent on bad links. Design/methodology/approach - By using the Digital Bibliography Library Project (DBLP), the research communities are formed implicitly and dynamically based on the users' research presence in the search environment and in the publication scenario, which is also used to assign users' roles and establish links between the users. The CHM, to store the hit count and hit list of page results for queries, is also constructed and updated after every search session to enhance the collaborative search among the researchers. Findings - The implicit researchers community formation, the assignment and dynamic updating of roles of the researchers based on research, search presence and search behaviour on the web as well as the usage of these roles during Collaborative Web Search have highly improved the relevancy of results. The CHM that holds the collaborative responses provided by the researchers on the search query results to support searching distinguishes this system from others. Thus the proposed system considerably improves the relevancy and reduces the time spent on bad links, thus improving recall and precision. Originality/value - The research findings illustrate the better performance of the system, by connecting researchers working in the same field and allowing them to help each other in a web search environment.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 66(2014) no.5, S.537-552
  8. Wacholder, N.; Liu, L.: User preference : a measure of query-term quality (2006) 0.05
    0.05194923 = product of:
      0.12987307 = sum of:
        0.10202001 = weight(_text_:list in 19) [ClassicSimilarity], result of:
          0.10202001 = score(doc=19,freq=4.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.4049732 = fieldWeight in 19, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=19)
        0.02785305 = weight(_text_:of in 19) [ClassicSimilarity], result of:
          0.02785305 = score(doc=19,freq=36.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.36650562 = fieldWeight in 19, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=19)
      0.4 = coord(2/5)
    
    Abstract
    The goal of this research is to understand what characteristics, if any, lead users engaged in interactive information seeking to prefer certain sets of query terms. Underlying this work is the assumption that query terms that information seekers prefer induce a kind of cognitive efficiency: They require less mental effort to process and therefore reduce the energy required in the interactive information-seeking process. Conceptually, this work applies insights from linguistics and cognitive science to the study of query-term quality. We report on an experiment in which we compare user preference for three sets of terms; one had been preconstructed by a human indexer, and two were identified automatically. Twenty-four participants used a merged list of all terms to answer a carefully created set of questions. By design, the interface constrained users to access the text exclusively via the displayed list of query terms. We found that participants displayed a preference for the human-constructed set of terms eight times greater than the preference for either set of automatically identified terms. We speculate about reasons for this strong preference and discuss the implications for information access. The primary contributions of this research are (a) explication of the concept of user preference as a measure of queryterm quality and (b) identification of a replicable procedure for measuring preference for sets of query terms created by different methods, whether human or automatic. All other factors being equal, query terms that users prefer clearly are the best choice for real-world information-access systems.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.12, S.1566-1580
  9. Pera, M.S.; Lund, W.; Ng, Y.-K.: ¬A sophisticated library search strategy using folksonomies and similarity matching (2009) 0.05
    0.050691903 = product of:
      0.0844865 = sum of:
        0.0185687 = weight(_text_:of in 2939) [ClassicSimilarity], result of:
          0.0185687 = score(doc=2939,freq=16.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.24433708 = fieldWeight in 2939, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2939)
        0.034342952 = weight(_text_:subject in 2939) [ClassicSimilarity], result of:
          0.034342952 = score(doc=2939,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.19758089 = fieldWeight in 2939, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2939)
        0.03157485 = product of:
          0.0631497 = sum of:
            0.0631497 = weight(_text_:headings in 2939) [ClassicSimilarity], result of:
              0.0631497 = score(doc=2939,freq=2.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.2679241 = fieldWeight in 2939, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2939)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Libraries, private and public, offer valuable resources to library patrons. As of today, the only way to locate information archived exclusively in libraries is through their catalogs. Library patrons, however, often find it difficult to formulate a proper query, which requires using specific keywords assigned to different fields of desired library catalog records, to obtain relevant results. These improperly formulated queries often yield irrelevant results or no results at all. This negative experience in dealing with existing library systems turns library patrons away from directly querying library catalogs; instead, they rely on Web search engines to perform their searches first, and upon obtaining the initial information (e.g., titles, subject headings, or authors) on the desired library materials, they query library catalogs. This searching strategy is an evidence of failure of today's library systems. In solving this problem, we propose an enhanced library system, which allows partial, similarity matching of (a) tags defined by ordinary users at a folksonomy site that describe the content of books and (b) unrestricted keywords specified by an ordinary library patron in a query to search for relevant library catalog records. The proposed library system allows patrons posting a query Q using commonly used words and ranks the retrieved results according to their degrees of resemblance with Q while maintaining the query processing time comparable with that achieved by current library search engines.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1392-1406
  10. Hsieh-Yee, I.: Effects of search experience and subject knowledge on the search tactics of novice and experienced searchers (1993) 0.05
    0.049995836 = product of:
      0.124989584 = sum of:
        0.02785305 = weight(_text_:of in 2405) [ClassicSimilarity], result of:
          0.02785305 = score(doc=2405,freq=36.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.36650562 = fieldWeight in 2405, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2405)
        0.097136535 = weight(_text_:subject in 2405) [ClassicSimilarity], result of:
          0.097136535 = score(doc=2405,freq=16.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.55884314 = fieldWeight in 2405, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2405)
      0.4 = coord(2/5)
    
    Abstract
    This study investigated the effects of subject knowledge and search experience on novices' and experienced searchers' use of search tactics in online searches. Novice and experienced searchers searched a practice question and two test questions in the ERIC database on the DIALOG system and their use of search tactics were recorded by protocols, transaction logs, and observation. Search tactics were idetified from the literature and verified in 10 pretests, and nine search tactics variables were operationalized to describe the differences between the two searcher groups. Data analyses showed that that subject knowledge interacted with search experience, and both variables affected searchers' behavior in four ways: (1) when questions in their subject area were searched, experience affected searchers' use of synonymous terms, monitoring of the search process, and combinations of serch terms; (2) when questions outside their subject areas were searched, experience affected searchers' reliance on their own terminology, use of the thesaurus, offline term selection, use of synonymous terms, and combinations of search terms; (3) within the same experience group, subject knowledge had no effect on novice searchers; but (4) subject knowledge affected experienced searcher's reliance on their own language, use of the thesaurus, offline term selection, use of synonymous terms, monitoring of the search, and combinations of search terms. The results showed that search experience affected searchers' use of many search tactics, and suggested that subject knowledge became a factor only after searchers have had a certain amount of search experience
    Source
    Journal of the American Society for Information Science. 44(1993) no.3, S.161-174
  11. Hsieh-Yee, I.: Search tactics of Web users in searching for texts, graphics, known items and subjects : a search simulation study (1998) 0.05
    0.046032526 = product of:
      0.07672087 = sum of:
        0.015756065 = weight(_text_:of in 2404) [ClassicSimilarity], result of:
          0.015756065 = score(doc=2404,freq=8.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.20732689 = fieldWeight in 2404, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2404)
        0.041211538 = weight(_text_:subject in 2404) [ClassicSimilarity], result of:
          0.041211538 = score(doc=2404,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.23709705 = fieldWeight in 2404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=2404)
        0.019753272 = product of:
          0.039506543 = sum of:
            0.039506543 = weight(_text_:22 in 2404) [ClassicSimilarity], result of:
              0.039506543 = score(doc=2404,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.23214069 = fieldWeight in 2404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2404)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Reports on a study of the search tactics used in searching the WWW and in dealing with difficulties such as too many postings and no relevant postings. Describes how the study was carried out, the analytical techniques used in it, and the results. Notes that with regard to tactics used to address search difficulties, no differences were found between searchers for texts and those for graphic information, and between those for known items and subject searches. Comments on the similarities and differences between the tactics used and and those used in online searching, including online catalogue searching
    Date
    25.12.1998 19:22:31
    Footnote
    Part of an issue devoted to electronic resources and their use in libraries, from the viewpoint of reference services, with an emphasis on the Internet and Geographic Information Systems
  12. Drabenstott, K.M.: Web search strategies (2000) 0.05
    0.04590714 = product of:
      0.0765119 = sum of:
        0.015756063 = weight(_text_:of in 1188) [ClassicSimilarity], result of:
          0.015756063 = score(doc=1188,freq=18.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.20732687 = fieldWeight in 1188, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1188)
        0.04758699 = weight(_text_:subject in 1188) [ClassicSimilarity], result of:
          0.04758699 = score(doc=1188,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.2737761 = fieldWeight in 1188, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=1188)
        0.013168849 = product of:
          0.026337698 = sum of:
            0.026337698 = weight(_text_:22 in 1188) [ClassicSimilarity], result of:
              0.026337698 = score(doc=1188,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.15476047 = fieldWeight in 1188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Surfing the World Wide Web used to be cool, dude, real cool. But things have gotten hot - so hot that finding something useful an the Web is no longer cool. It is suffocating Web searchers in the smoke and debris of mountain-sized lists of hits, decisions about which search engines they should use, whether they will get lost in the dizzying maze of a subject directory, use the right syntax for the search engine at hand, enter keywords that are likely to retrieve hits an the topics they have in mind, or enlist a browser that has sufficient functionality to display the most promising hits. When it comes to Web searching, in a few short years we have gone from the cool image of surfing the Web into the frying pan of searching the Web. We can turn down the heat by rethinking what Web searchers are doing and introduce some order into the chaos. Web search strategies that are tool-based-oriented to specific Web searching tools such as search en gines, subject directories, and meta search engines-have been widely promoted, and these strategies are just not working. It is time to dissect what Web searching tools expect from searchers and adjust our search strategies to these new tools. This discussion offers Web searchers help in the form of search strategies that are based an strategies that librarians have been using for a long time to search commercial information retrieval systems like Dialog, NEXIS, Wilsonline, FirstSearch, and Data-Star.
    Date
    22. 9.1997 19:16:05
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
    Source
    Saving the time of the library user through subject access innovation: Papers in honor of Pauline Atherton Cochrane. Ed.: W.J. Wheeler
  13. Hoeber, O.; Yang, X.D.: Evaluating WordBars in exploratory Web search scenarios (2008) 0.04
    0.03968294 = product of:
      0.09920735 = sum of:
        0.07213905 = weight(_text_:list in 2046) [ClassicSimilarity], result of:
          0.07213905 = score(doc=2046,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 2046, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2046)
        0.0270683 = weight(_text_:of in 2046) [ClassicSimilarity], result of:
          0.0270683 = score(doc=2046,freq=34.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.35617945 = fieldWeight in 2046, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2046)
      0.4 = coord(2/5)
    
    Abstract
    Web searchers commonly have difficulties crafting queries to fulfill their information needs; even after they are able to craft a query, they often find it challenging to evaluate the results of their Web searches. Sources of these problems include the lack of support for constructing and refining queries, and the static nature of the list-based representations of Web search results. WordBars has been developed to assist users in their Web search and exploration tasks. This system provides a visual representation of the frequencies of the terms found in the first 100 document surrogates returned from an initial query, in the form of a histogram. Exploration of the search results is supported through term selection in the histogram, resulting in a re-sorting of the search results based on the use of the selected terms in the document surrogates. Terms from the histogram can be easily added or removed from the query, generating a new set of search results. Examples illustrate how WordBars can provide valuable support for query refinement and search results exploration, both when vague and specific initial queries are provided. User evaluations with both expert and intermediate Web searchers illustrate the benefits of the interactive exploration features of WordBars in terms of effectiveness as well as subjective measures. Although differences were found in the demographics of these two user groups, both were able to benefit from the features of WordBars.
  14. Pu, H.-T.; Chuang, S.-L.; Yang, C.: Subject categorization of query terms for exploring Web users' search interests (2002) 0.04
    0.039426763 = product of:
      0.098566905 = sum of:
        0.02177373 = weight(_text_:of in 587) [ClassicSimilarity], result of:
          0.02177373 = score(doc=587,freq=22.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.28651062 = fieldWeight in 587, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=587)
        0.07679317 = weight(_text_:subject in 587) [ClassicSimilarity], result of:
          0.07679317 = score(doc=587,freq=10.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4418043 = fieldWeight in 587, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=587)
      0.4 = coord(2/5)
    
    Abstract
    Subject content analysis of Web query terms is essential to understand Web searching interests. Such analysis includes exploring search topics and observing changes in their frequency distributions with time. To provide a basis for in-depth analysis of users' search interests on a larger scale, this article presents a query categorization approach to automatically classifying Web query terms into broad subject categories. Because a query is short in length and simple in structure, its intended subject(s) of search is difficult to judge. Our approach, therefore, combines the search processes of real-world search engines to obtain highly ranked Web documents based on each unknown query term. These documents are used to extract cooccurring terms and to create a feature set. An effective ranking function has also been developed to find the most appropriate categories. Three search engine logs in Taiwan were collected and tested. They contained over 5 million queries from different periods of time. The achieved performance is quite encouraging compared with that of human categorization. The experimental results demonstrate that the approach is efficient in dealing with large numbers of queries and adaptable to the dynamic Web environment. Through good integration of human and machine efforts, the frequency distributions of subject categories in response to changes in users' search interests can be systematically observed in real time. The approach has also shown potential for use in various information retrieval applications, and provides a basis for further Web searching studies.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.617-630
  15. Yuan, X.; Belkin, N.J.: Investigating information retrieval support techniques for different information-seeking strategies (2010) 0.04
    0.038323835 = product of:
      0.09580959 = sum of:
        0.07213905 = weight(_text_:list in 3699) [ClassicSimilarity], result of:
          0.07213905 = score(doc=3699,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 3699, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3699)
        0.023670541 = weight(_text_:of in 3699) [ClassicSimilarity], result of:
          0.023670541 = score(doc=3699,freq=26.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.31146988 = fieldWeight in 3699, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3699)
      0.4 = coord(2/5)
    
    Abstract
    We report on a study that investigated the efficacy of four different interactive information retrieval (IIR) systems, each designed to support a specific information-seeking strategy (ISS). These systems were constructed using different combinations of IR techniques (i.e., combinations of different methods of representation, comparison, presentation and navigation), each of which was hypothesized to be well suited to support a specific ISS. We compared the performance of searchers in each such system, designated experimental, to an appropriate baseline system, which implemented the standard specified query and results list model of current state-of-the-art experimental and operational IR systems. Four within-subjects experiments were conducted for the purpose of this comparison. Results showed that each of the experimental systems was superior to its baseline system in supporting user performance for the specific ISS (that is, the information problem leading to that ISS) for which the system was designed. These results indicate that an IIR system, which intends to support more than one kind of ISS, should be designed within a framework which allows the use and combination of different IR support techniques for different ISSs.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1543-1563
  16. Kang, X.; Wu, Y.; Ren, W.: Toward action comprehension for searching : mining actionable intents in query entities (2020) 0.04
    0.03795239 = product of:
      0.09488097 = sum of:
        0.07213905 = weight(_text_:list in 5613) [ClassicSimilarity], result of:
          0.07213905 = score(doc=5613,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 5613, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5613)
        0.022741921 = weight(_text_:of in 5613) [ClassicSimilarity], result of:
          0.022741921 = score(doc=5613,freq=24.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2992506 = fieldWeight in 5613, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5613)
      0.4 = coord(2/5)
    
    Abstract
    Understanding search engine users' intents has been a popular study in information retrieval, which directly affects the quality of retrieved information. One of the fundamental problems in this field is to find a connection between the entity in a query and the potential intents of the users, the latter of which would further reveal important information for facilitating the users' future actions. In this article, we present a novel research method for mining the actionable intents for search users, by generating a ranked list of the potentially most informative actions based on a massive pool of action samples. We compare different search strategies and their combinations for retrieving the action pool and develop three criteria for measuring the informativeness of the selected action samples, that is, the significance of an action sample within the pool, the representativeness of an action sample for the other candidate samples, and the diverseness of an action sample with respect to the selected actions. Our experiment, based on the Action Mining (AM) query entity data set from the Actionable Knowledge Graph (AKG) task at NTCIR-13, suggests that the proposed approach is effective in generating an informative and early-satisfying ranking of potential actions for search users.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.2, S.143-157
  17. Kules, B.; Shneiderman, B.: Users can change their web search tactics : design guidelines for categorized overviews (2008) 0.04
    0.037565112 = product of:
      0.09391278 = sum of:
        0.07213905 = weight(_text_:list in 2044) [ClassicSimilarity], result of:
          0.07213905 = score(doc=2044,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 2044, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2044)
        0.02177373 = weight(_text_:of in 2044) [ClassicSimilarity], result of:
          0.02177373 = score(doc=2044,freq=22.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.28651062 = fieldWeight in 2044, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2044)
      0.4 = coord(2/5)
    
    Abstract
    Categorized overviews of web search results are a promising way to support user exploration, understanding, and discovery. These search interfaces combine a metadata-based overview with the list of search results to enable a rich form of interaction. A study of 24 sophisticated users carrying out complex tasks suggests how searchers may adapt their search tactics when using categorized overviews. This mixed methods study evaluated categorized overviews of web search results organized into thematic, geographic, and government categories. Participants conducted four exploratory searches during a 2-hour session to generate ideas for newspaper articles about specified topics such as "human smuggling." Results showed that subjects explored deeper while feeling more organized, and that the categorized overview helped subjects better assess their results, although no significant differences were detected in the quality of the article ideas. A qualitative analysis of searcher comments identified seven tactics that participants reported adopting when using categorized overviews. This paper concludes by proposing a set of guidelines for the design of exploratory search interfaces. An understanding of the impact of categorized overviews on search tactics will be useful to web search researchers, search interface designers, information architects and web developers.
  18. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains (2012) 0.04
    0.03580339 = product of:
      0.089508474 = sum of:
        0.07213905 = weight(_text_:list in 107) [ClassicSimilarity], result of:
          0.07213905 = score(doc=107,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.2863593 = fieldWeight in 107, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0390625 = fieldNorm(doc=107)
        0.017369429 = weight(_text_:of in 107) [ClassicSimilarity], result of:
          0.017369429 = score(doc=107,freq=14.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.22855641 = fieldWeight in 107, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=107)
      0.4 = coord(2/5)
    
    Abstract
    This chapter is dedicated to factual question answering, i.e., extracting precise and exact answers to question given in natural language from texts. A question in natural language gives more information than a bag of word query (i.e., a query made of a list of words), and provides clues for finding precise answers. The author first focuses on the presentation of the underlying problems mainly due to the existence of linguistic variations between questions and their answerable pieces of texts for selecting relevant passages and extracting reliable answers. The author first presents how to answer factual question in open domain. The author also presents answering questions in specialty domain as it requires dealing with semi-structured knowledge and specialized terminologies, and can lead to different applications, as information management in corporations for example. Searching answers on the Web constitutes another application frame and introduces specificities linked to Web redundancy or collaborative usage. Besides, the Web is also multilingual, and a challenging problem consists in searching answers in target language documents other than the source language of the question. For all these topics, this chapter presents main approaches and the remaining problems.
  19. Morse, P.M.: Browsing and search theory (1973) 0.03
    0.028834863 = product of:
      0.072087154 = sum of:
        0.02599618 = weight(_text_:of in 3339) [ClassicSimilarity], result of:
          0.02599618 = score(doc=3339,freq=4.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.34207192 = fieldWeight in 3339, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=3339)
        0.04609097 = product of:
          0.09218194 = sum of:
            0.09218194 = weight(_text_:22 in 3339) [ClassicSimilarity], result of:
              0.09218194 = score(doc=3339,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.5416616 = fieldWeight in 3339, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3339)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    22. 5.2005 19:52:29
    Source
    Toward a theory of librarianship. Papers in honor of J.H. Shera. Ed. by H. Rawski
  20. Branch, J.L.: Investigating the information-seeking process of adolescents : the value of using think alouds and think afters (2000) 0.03
    0.028834863 = product of:
      0.072087154 = sum of:
        0.02599618 = weight(_text_:of in 3924) [ClassicSimilarity], result of:
          0.02599618 = score(doc=3924,freq=4.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.34207192 = fieldWeight in 3924, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=3924)
        0.04609097 = product of:
          0.09218194 = sum of:
            0.09218194 = weight(_text_:22 in 3924) [ClassicSimilarity], result of:
              0.09218194 = score(doc=3924,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.5416616 = fieldWeight in 3924, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3924)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Library and information science research. 22(2000) no.4, S.371-382

Languages

  • e 258
  • d 2
  • ja 1
  • More… Less…

Types

  • a 251
  • m 8
  • el 2
  • s 2
  • More… Less…