Search (104 results, page 1 of 6)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Sharada, B.A.: Ranganathan's Colon Classification : Kannada-English Version 'dwibindu vargiikaraNa' (2012) 0.13
    0.12616086 = product of:
      0.21026808 = sum of:
        0.100994654 = weight(_text_:list in 827) [ClassicSimilarity], result of:
          0.100994654 = score(doc=827,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.40090302 = fieldWeight in 827, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
        0.02599618 = weight(_text_:of in 827) [ClassicSimilarity], result of:
          0.02599618 = score(doc=827,freq=16.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.34207192 = fieldWeight in 827, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
        0.08327723 = weight(_text_:subject in 827) [ClassicSimilarity], result of:
          0.08327723 = score(doc=827,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4791082 = fieldWeight in 827, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
      0.6 = coord(3/5)
    
    Abstract
    "dwibindu vargiikaraNa" is the Kannada rendering of the revised Colon Classification, 7th Edition, intended essentially for the classification of macro documents. This paper discusses the planning, preparation, and features of Colon Classification (CC) in Kannada, one of the major Indian languages as well as the Official Language of Karnataka, and uploading the CC on the web. Linguistic issues related to the Kannada rendering are discussed with possible solutions. It creates facilities in the field of Indexing Language (IL) to prepare products such as, Subject Heading List, Information Retrieval Thesaurus, and creation of subject glossaries or updating the available subject dictionaries in Kannada.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  2. Rodriguez, R.D.: Kaiser's systematic indexing (1984) 0.10
    0.1015089 = product of:
      0.1691815 = sum of:
        0.023487754 = weight(_text_:of in 4521) [ClassicSimilarity], result of:
          0.023487754 = score(doc=4521,freq=10.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3090647 = fieldWeight in 4521, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=4521)
        0.09517398 = weight(_text_:subject in 4521) [ClassicSimilarity], result of:
          0.09517398 = score(doc=4521,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.5475522 = fieldWeight in 4521, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0625 = fieldNorm(doc=4521)
        0.05051976 = product of:
          0.10103952 = sum of:
            0.10103952 = weight(_text_:headings in 4521) [ClassicSimilarity], result of:
              0.10103952 = score(doc=4521,freq=2.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.42867854 = fieldWeight in 4521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4521)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    J. Kaiser (1868-1927) developed a system of subject indexing based on what he called "concretes" and "processes" to govern the form of subject headings and subdivisions. Although Kaiser applied his systematic indexing to specialized technical and business collections, his ideas are entirely applicable to all book collections and catalogs. Though largely ignored, Kaiser's system is of permanent interest in the study of the development of subject analysis
  3. Szostak, R.: Facet analysis using grammar (2017) 0.08
    0.077477075 = product of:
      0.12912846 = sum of:
        0.020760437 = weight(_text_:of in 3866) [ClassicSimilarity], result of:
          0.020760437 = score(doc=3866,freq=20.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.27317715 = fieldWeight in 3866, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3866)
        0.07679317 = weight(_text_:subject in 3866) [ClassicSimilarity], result of:
          0.07679317 = score(doc=3866,freq=10.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4418043 = fieldWeight in 3866, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3866)
        0.03157485 = product of:
          0.0631497 = sum of:
            0.0631497 = weight(_text_:headings in 3866) [ClassicSimilarity], result of:
              0.0631497 = score(doc=3866,freq=2.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.2679241 = fieldWeight in 3866, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3866)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Basic grammar can achieve most/all of the goals of facet analysis without requiring the use of facet indicators. Facet analysis is thus rendered far simpler for classificationist, classifier, and user. We compare facet analysis and grammar, and show how various facets can be represented grammatically. We then address potential challenges in employing grammar as subject classification. A detailed review of basic grammar supports the hypothesis that it is feasible to usefully employ grammatical construction in subject classification. A manageable - and programmable - set of adjustments is required as classifiers move fairly directly from sentences in a document (or object or idea) description to formulating a subject classification. The user likewise can move fairly quickly from a query to the identification of relevant works. A review of theories in linguistics indicates that a grammatical approach should reduce ambiguity while encouraging ease of use. This paper applies the recommended approach to a small sample of recently published books. It finds that the approach is feasible and results in a more precise subject description than the subject headings assigned at present. It then explores PRECIS, an indexing system developed in the 1970s. Though our approach differs from PRECIS in many important ways, the experience of PRECIS supports our conclusions regarding both feasibility and precision.
  4. Dutta, B.: Ranganathan's elucidation of subject in the light of 'Infinity (8)' (2015) 0.06
    0.06127399 = product of:
      0.15318497 = sum of:
        0.029359693 = weight(_text_:of in 2794) [ClassicSimilarity], result of:
          0.029359693 = score(doc=2794,freq=40.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.38633084 = fieldWeight in 2794, product of:
              6.3245554 = tf(freq=40.0), with freq of:
                40.0 = termFreq=40.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2794)
        0.123825274 = weight(_text_:subject in 2794) [ClassicSimilarity], result of:
          0.123825274 = score(doc=2794,freq=26.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.71238804 = fieldWeight in 2794, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2794)
      0.4 = coord(2/5)
    
    Abstract
    This paper reviews Ranganathan's description of subject from mathematical angle. Ranganathan was highly influenced by Nineteenth Century mathematician George Cantor and he used the concept of infinity in developing an axiomatic interpretation of subject. Majority of library scientists interpreted the concept of subject merely as a term or descriptor or heading to include the same in cataloguing and subject indexing. Some library scientists interpreted subject on the basis of document, i.e. from the angle of the concept of aboutness or epistemological potential of the document etc. Some people explained subject from the viewpoint of social, cultural or socio-cultural process. Attempts were made to describe subject from epistemological viewpoint. But S R Ranganathan was the first to develop an axiomatic concept of subject on its own. He built up an independent idea of subject that is ubiquitously pervasive with human cognition process. To develop the basic foundation of subject, he used the mathematical concepts of infinity and infinitesimal and construed the set of subjects or universe of subjects as continuous infinite universe. The subject may also exist in extremely micro-form, which was termed as spot subject and analogized with point, which is dimensionless having only an existence. The influence of Twentieth Century physicist George Gamow on Ranganathan's thought has also been discussed.
    Source
    Annals of library and information studies. 62(2015) no.4, S.255-264
  5. Dahlberg, I.: ¬The future of classification in libraries and networks : a theoretical point of view (1995) 0.06
    0.06115011 = product of:
      0.10191685 = sum of:
        0.02177373 = weight(_text_:of in 5563) [ClassicSimilarity], result of:
          0.02177373 = score(doc=5563,freq=22.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.28651062 = fieldWeight in 5563, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5563)
        0.048568267 = weight(_text_:subject in 5563) [ClassicSimilarity], result of:
          0.048568267 = score(doc=5563,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27942157 = fieldWeight in 5563, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5563)
        0.03157485 = product of:
          0.0631497 = sum of:
            0.0631497 = weight(_text_:headings in 5563) [ClassicSimilarity], result of:
              0.0631497 = score(doc=5563,freq=2.0), product of:
                0.23569997 = queryWeight, product of:
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.04859849 = queryNorm
                0.2679241 = fieldWeight in 5563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.849944 = idf(docFreq=940, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5563)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Some time ago, some people said classification is dead, we don't need it any more. They probably thought that subject headings could do the job of the necessary subject analysis and shelving of books. However, all of a sudden in 1984 the attitude changed, when an OCLC study of Karen Markey started to show what could be done even with an "outdated system" such as the Dewey Decimal Classification in the computer, once it was visible on a screen to show the helpfulness of a classified library catalogue called an OPAC; classification was brought back into the minds of doubtful librarians and of all those who thought they would not need it any longer. But the problem once phrased: "We are stuck with the two old systems, LCC and DDC" would not find a solution and is still with us today. We know that our systems are outdated but we seem still to be unable to replace them with better ones. What then should one do and advise, knowing that we need something better? Perhaps a new universal ordering system which more adequately represents and mediates the world of our present day knowledge? If we were to develop it from scratch, how would we create it and implement it in such a way that it would be acceptable to the majority of the present intellectual world population?
  6. Facets: a fruitful notion in many domains : special issue on facet analysis (2008) 0.05
    0.051081654 = product of:
      0.085136086 = sum of:
        0.036069524 = weight(_text_:list in 3262) [ClassicSimilarity], result of:
          0.036069524 = score(doc=3262,freq=2.0), product of:
            0.25191793 = queryWeight, product of:
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.04859849 = queryNorm
            0.14317966 = fieldWeight in 3262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.183657 = idf(docFreq=673, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.024782432 = weight(_text_:of in 3262) [ClassicSimilarity], result of:
          0.024782432 = score(doc=3262,freq=114.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.32610077 = fieldWeight in 3262, product of:
              10.677078 = tf(freq=114.0), with freq of:
                114.0 = termFreq=114.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
        0.024284134 = weight(_text_:subject in 3262) [ClassicSimilarity], result of:
          0.024284134 = score(doc=3262,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.13971078 = fieldWeight in 3262, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.01953125 = fieldNorm(doc=3262)
      0.6 = coord(3/5)
    
    Footnote
    Rez. in: KO 36(2009) no.1, S.62-63 (K. La Barre): "This special issue of Axiomathes presents an ambitious dual agenda. It attempts to highlight aspects of facet analysis (as used in LIS) that are shared by cognate approaches in philosophy, psychology, linguistics and computer science. Secondarily, the issue aims to attract others to the study and use of facet analysis. The authors represent a blend of lifetime involvement with facet analysis, such as Vickery, Broughton, Beghtol, and Dahlberg; those with well developed research agendas such as Tudhope, and Priss; and relative newcomers such as Gnoli, Cheti and Paradisi, and Slavic. Omissions are inescapable, but a more balanced issue would have resulted from inclusion of at least one researcher from the Indian school of facet theory. Another valuable addition might have been a reaction to the issue by one of the chief critics of facet analysis. Potentially useful, but absent, is a comprehensive bibliography of resources for those wishing to engage in further study, that now lie scattered throughout the issue. Several of the papers assume relative familiarity with facet analytical concepts and definitions, some of which are contested even within LIS. Gnoli's introduction (p. 127-130) traces the trajectory, extensions and new developments of this analytico- synthetic approach to subject access, while providing a laundry list of cognate approaches that are similar to facet analysis. This brief essay and the article by Priss (p. 243-255) directly addresses this first part of Gnoli's agenda. Priss provides detailed discussion of facet-like structures in computer science (p. 245- 246), and outlines the similarity between Formal Concept Analysis and facets. This comparison is equally fruitful for researchers in computer science and library and information science. By bridging into a discussion of visualization challenges for facet display, further research is also invited. Many of the remaining papers comprehensively detail the intellectual heritage of facet analysis (Beghtol; Broughton, p. 195-198; Dahlberg; Tudhope and Binding, p. 213-215; Vickery). Beghtol's (p. 131-144) examination of the origins of facet theory through the lens of the textbooks written by Ranganathan's mentor W.C.B. Sayers (1881-1960), Manual of Classification (1926, 1944, 1955) and a textbook written by Mills A Modern Outline of Classification (1964), serves to reveal the deep intellectual heritage of the changes in classification theory over time, as well as Ranganathan's own influence on and debt to Sayers.
    Several of the papers are clearly written as primers and neatly address the second agenda item: attracting others to the study and use of facet analysis. The most valuable papers are written in clear, approachable language. Vickery's paper (p. 145-160) is a clarion call for faceted classification and facet analysis. The heart of the paper is a primer for central concepts and techniques. Vickery explains the value of using faceted classification in document retrieval. Also provided are potential solutions to thorny interface and display issues with facets. Vickery looks to complementary themes in knowledge organization, such as thesauri and ontologies as potential areas for extending the facet concept. Broughton (p. 193-210) describes a rigorous approach to the application of facet analysis in the creation of a compatible thesaurus from the schedules of the 2nd edition of the Bliss Classification (BC2). This discussion of exemplary faceted thesauri, recent standards work, and difficulties encountered in the project will provide valuable guidance for future research in this area. Slavic (p. 257-271) provides a challenge to make faceted classification come 'alive' through promoting the use of machine-readable formats for use and exchange in applications such as Topic Maps and SKOS (Simple Knowledge Organization Systems), and as supported by the standard BS8723 (2005) Structured Vocabulary for Information Retrieval. She also urges designers of faceted classifications to get involved in standards work. Cheti and Paradisi (p. 223-241) outline a basic approach to converting an existing subject indexing tool, the Nuovo Soggetario, into a faceted thesaurus through the use of facet analysis. This discussion, well grounded in the canonical literature, may well serve as a primer for future efforts. Also useful for those who wish to construct faceted thesauri is the article by Tudhope and Binding (p. 211-222). This contains an outline of basic elements to be found in exemplar faceted thesauri, and a discussion of project FACET (Faceted Access to Cultural heritage Terminology) with algorithmically-based semantic query expansion in a dataset composed of items from the National Museum of Science and Industry indexed with AAT (Art and Architecture Thesaurus). This paper looks to the future hybridization of ontologies and facets through standards developments such as SKOS because of the "lightweight semantics" inherent in facets.
    Two of the papers revisit the interaction of facets with the theory of integrative levels, which posits that the organization of the natural world reflects increasingly interdependent complexity. This approach was tested as a basis for the creation of faceted classifications in the 1960s. These contemporary treatments of integrative levels are not discipline-driven as were the early approaches, but instead are ontological and phenomenological in focus. Dahlberg (p. 161-172) outlines the creation of the ICC (Information Coding System) and the application of the Systematifier in the generation of facets and the creation of a fully faceted classification. Gnoli (p. 177-192) proposes the use of fundamental categories as a way to redefine facets and fundamental categories in "more universal and level-independent ways" (p. 192). Given that Axiomathes has a stated focus on "contemporary issues in cognition and ontology" and the following thesis: "that real advances in contemporary science may depend upon a consideration of the origins and intellectual history of ideas at the forefront of current research," this venue seems well suited for the implementation of the stated agenda, to illustrate complementary approaches and to stimulate research. As situated, this special issue may well serve as a bridge to a more interdisciplinary dialogue about facet analysis than has previously been the case."
  7. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.05
    0.049779568 = product of:
      0.08296594 = sum of:
        0.032161932 = weight(_text_:of in 1418) [ClassicSimilarity], result of:
          0.032161932 = score(doc=1418,freq=48.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.42320424 = fieldWeight in 1418, product of:
              6.928203 = tf(freq=48.0), with freq of:
                48.0 = termFreq=48.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.034342952 = weight(_text_:subject in 1418) [ClassicSimilarity], result of:
          0.034342952 = score(doc=1418,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.19758089 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.016461061 = product of:
          0.032922123 = sum of:
            0.032922123 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.032922123 = score(doc=1418,freq=2.0), product of:
                0.17018363 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04859849 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  8. Wilson, T.D.: ¬The work of the British Classification Research Group (1972) 0.04
    0.041882206 = product of:
      0.10470551 = sum of:
        0.022282438 = weight(_text_:of in 2766) [ClassicSimilarity], result of:
          0.022282438 = score(doc=2766,freq=4.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2932045 = fieldWeight in 2766, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=2766)
        0.082423076 = weight(_text_:subject in 2766) [ClassicSimilarity], result of:
          0.082423076 = score(doc=2766,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4741941 = fieldWeight in 2766, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.09375 = fieldNorm(doc=2766)
      0.4 = coord(2/5)
    
    Source
    Subject retrieval in the seventies: new directions. Proc. of an int. symp. ... College Park, 14.-15.5.1971. Ed.: H.H. Wellisch u.a
  9. Austin, D.: Basic concept classes and primitive relations (1982) 0.04
    0.039271656 = product of:
      0.09817914 = sum of:
        0.015756065 = weight(_text_:of in 6580) [ClassicSimilarity], result of:
          0.015756065 = score(doc=6580,freq=2.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.20732689 = fieldWeight in 6580, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=6580)
        0.082423076 = weight(_text_:subject in 6580) [ClassicSimilarity], result of:
          0.082423076 = score(doc=6580,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.4741941 = fieldWeight in 6580, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.09375 = fieldNorm(doc=6580)
      0.4 = coord(2/5)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  10. Asundi, A.Y.: Domain specific categories and relations and their potential applications : a case study of two arrays of agriculture schedule of Colon Classification (2012) 0.04
    0.03900359 = product of:
      0.09750897 = sum of:
        0.026128478 = weight(_text_:of in 843) [ClassicSimilarity], result of:
          0.026128478 = score(doc=843,freq=22.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.34381276 = fieldWeight in 843, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=843)
        0.07138049 = weight(_text_:subject in 843) [ClassicSimilarity], result of:
          0.07138049 = score(doc=843,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.41066417 = fieldWeight in 843, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=843)
      0.4 = coord(2/5)
    
    Abstract
    The categories/isolates are broadly conceived as common and special. The common categories are applicable to all the classes of subjects in a Classification system, whereas the specials are applicable within a domain or specified classes of a classification system. The CC has represented some unique special categories, especially in the Agriculture Subject schedule, and such a provision is not seen in any other classification system; not even in any other subject schedule of Colon Classification. These special categories are termed here as "Domain Specific Categories". The paper analyses the thematic relationships within and outside the subject schedule with potential applications in devising a scheme of metadata as demonstrated in a research study on Indian Medicinal Plants. The other potential applications of such thematic relationships are in the creation of semantic maps and in linking concepts from different domains of knowledge.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  11. Gnoli, C.: "Classic"vs. "freely" faceted classification (2007) 0.04
    0.03746517 = product of:
      0.093662925 = sum of:
        0.022282438 = weight(_text_:of in 715) [ClassicSimilarity], result of:
          0.022282438 = score(doc=715,freq=16.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.2932045 = fieldWeight in 715, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=715)
        0.07138049 = weight(_text_:subject in 715) [ClassicSimilarity], result of:
          0.07138049 = score(doc=715,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.41066417 = fieldWeight in 715, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=715)
      0.4 = coord(2/5)
    
    Abstract
    Claudio Gnoli of the University of Pavia in Italy and Chair of ISKO Italy, explored the relative merits of classic 'faceted classification' (FC) and 'freely faceted classification' (FFC). In classic FC, the facets (and their relationships) which might be combined to express a compound subject, are restricted to those prescribed as inherent in the subject area. FC is therefore largely bounded by and restricted to a specific subject area. At the other extreme, free classification (as in the Web or folksonomies) allows the combination of values from multiple, disparate domains where the relationships among the elements are often indeterminate, and the semantics obscure. Claudio described how punched cards were an early example of free classification, and cited the coordination of dogs : postmen : bites as one where the absence of defined relationships made the semantics ambiguous
  12. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.04
    0.03551736 = product of:
      0.088793404 = sum of:
        0.03051149 = weight(_text_:of in 831) [ClassicSimilarity], result of:
          0.03051149 = score(doc=831,freq=30.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.4014868 = fieldWeight in 831, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
        0.058281917 = weight(_text_:subject in 831) [ClassicSimilarity], result of:
          0.058281917 = score(doc=831,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.33530587 = fieldWeight in 831, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
      0.4 = coord(2/5)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
  13. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.03
    0.034934714 = product of:
      0.087336786 = sum of:
        0.02785305 = weight(_text_:of in 2874) [ClassicSimilarity], result of:
          0.02785305 = score(doc=2874,freq=36.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.36650562 = fieldWeight in 2874, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.059483737 = weight(_text_:subject in 2874) [ClassicSimilarity], result of:
          0.059483737 = score(doc=2874,freq=6.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.34222013 = fieldWeight in 2874, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  14. Kaiser, J.O.: Systematic indexing (1985) 0.03
    0.03464894 = product of:
      0.08662235 = sum of:
        0.025187809 = weight(_text_:of in 571) [ClassicSimilarity], result of:
          0.025187809 = score(doc=571,freq=46.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.33143494 = fieldWeight in 571, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=571)
        0.06143454 = weight(_text_:subject in 571) [ClassicSimilarity], result of:
          0.06143454 = score(doc=571,freq=10.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.35344344 = fieldWeight in 571, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.03125 = fieldNorm(doc=571)
      0.4 = coord(2/5)
    
    Abstract
    A native of Germany and a former teacher of languages and music, Julius Otto Kaiser (1868-1927) came to the Philadelphia Commercial Museum to be its librarian in 1896. Faced with the problem of making "information" accessible, he developed a method of indexing he called systematic indexing. The first draft of his scheme, published in 1896-97, was an important landmark in the history of subject analysis. R. K. Olding credits Kaiser with making the greatest single advance in indexing theory since Charles A. Cutter and John Metcalfe eulogizes him by observing that "in sheer capacity for really scientific and logical thinking, Kaiser's was probably the best mind that has ever applied itself to subject indexing." Kaiser was an admirer of "system." By systematic indexing he meant indicating information not with natural language expressions as, for instance, Cutter had advocated, but with artificial expressions constructed according to formulas. Kaiser grudged natural language its approximateness, its vagaries, and its ambiguities. The formulas he introduced were to provide a "machinery for regularising or standardising language" (paragraph 67). Kaiser recognized three categories or "facets" of index terms: (1) terms of concretes, representing things, real or imaginary (e.g., money, machines); (2) terms of processes, representing either conditions attaching to things or their actions (e.g., trade, manufacture); and (3) terms of localities, representing, for the most part, countries (e.g., France, South Africa). Expressions in Kaiser's index language were called statements. Statements consisted of sequences of terms, the syntax of which was prescribed by formula. These formulas specified sequences of terms by reference to category types. Only three citation orders were permitted: a term in the concrete category followed by one in the process category (e.g., Wool-Scouring); (2) a country term followed by a process term (e.g., Brazil - Education); and (3) a concrete term followed by a country term, followed by a process term (e.g., Nitrate-Chile-Trade). Kaiser's system was a precursor of two of the most significant developments in twentieth-century approaches to subject access-the special purpose use of language for indexing, thus the concept of index language, which was to emerge as a generative idea at the time of the second Cranfield experiment (1966) and the use of facets to categorize subject indicators, which was to become the characterizing feature of analytico-synthetic indexing methods such as the Colon classification. In addition to its visionary quality, Kaiser's work is notable for its meticulousness and honesty, as can be seen, for instance, in his observations about the difficulties in facet definition.
    Source
    Theory of subject analysis: a sourcebook. Ed.: L.M. Chan, et al
  15. Broughton, V.: ¬A faceted classification as the basis of a faceted terminology : conversion of a classified structure to thesaurus format in the Bliss Bibliographic Classification, 2nd Edition (2008) 0.03
    0.032766405 = product of:
      0.08191601 = sum of:
        0.023634095 = weight(_text_:of in 1857) [ClassicSimilarity], result of:
          0.023634095 = score(doc=1857,freq=18.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.3109903 = fieldWeight in 1857, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
        0.058281917 = weight(_text_:subject in 1857) [ClassicSimilarity], result of:
          0.058281917 = score(doc=1857,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.33530587 = fieldWeight in 1857, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.046875 = fieldNorm(doc=1857)
      0.4 = coord(2/5)
    
    Abstract
    Facet analysis is an established methodology for building classifications and subject indexing systems, but has been less rigorously applied to thesauri. The process of creating a compatible thesaurus from the schedules of the Bliss Bibliographic Classification 2nd edition highlights the ways in which the conceptual relationships in a subject field are handled in the two types of retrieval languages. An underlying uniformity of theory is established, and the way in which software can manage the relationships is discussed. The manner of displaying verbal expressions of concepts (vocabulary control) is also considered, but is found to be less well controlled in the classification than in the thesaurus. Nevertheless, there is good reason to think that facet analysis provides a sound basis for structuring a variety of knowledge organization tools.
  16. Austin, D.: Differences between library classifications and machine-based subject retrieval systems : some inferences drawn from research in Britain, 1963-1973 (1979) 0.03
    0.032726385 = product of:
      0.08181596 = sum of:
        0.013130054 = weight(_text_:of in 2564) [ClassicSimilarity], result of:
          0.013130054 = score(doc=2564,freq=2.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.17277241 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
        0.068685904 = weight(_text_:subject in 2564) [ClassicSimilarity], result of:
          0.068685904 = score(doc=2564,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.39516178 = fieldWeight in 2564, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.078125 = fieldNorm(doc=2564)
      0.4 = coord(2/5)
    
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975. Ed. by A. Neelameghan
  17. Hudon, M.: Facet (2020) 0.03
    0.031425342 = product of:
      0.078563355 = sum of:
        0.030483223 = weight(_text_:of in 5899) [ClassicSimilarity], result of:
          0.030483223 = score(doc=5899,freq=22.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.40111488 = fieldWeight in 5899, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
        0.04808013 = weight(_text_:subject in 5899) [ClassicSimilarity], result of:
          0.04808013 = score(doc=5899,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27661324 = fieldWeight in 5899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5899)
      0.4 = coord(2/5)
    
    Abstract
    S.R. Ranganathan is credited with the introduction of the term "facet" in the field of knowledge organization towards the middle of the twentieth century. Facets have traditionally been used to organize document collections and to express complex subjects. In the digital world, they act as filters to facilitate navigation and improve retrieval. But the popularity of the term does not mean that a definitive characterization of the concept has been established. Indeed, several conceptualizations of the facet co-exist. This article provides an overview of formal and informal definitions found in the literature of knowledge organization, followed by a discussion of four common conceptualizations of the facet: process vs product, nature vs function, object vs subject and organization vs navigation.
    Series
    Reviews of concepts in knowledge organization
  18. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.03
    0.02993135 = product of:
      0.07482837 = sum of:
        0.026260108 = weight(_text_:of in 4824) [ClassicSimilarity], result of:
          0.026260108 = score(doc=4824,freq=32.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.34554482 = fieldWeight in 4824, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
        0.048568267 = weight(_text_:subject in 4824) [ClassicSimilarity], result of:
          0.048568267 = score(doc=4824,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27942157 = fieldWeight in 4824, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
      0.4 = coord(2/5)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  19. Frické, M.: Logical division (2016) 0.03
    0.028895525 = product of:
      0.07223881 = sum of:
        0.023670541 = weight(_text_:of in 3183) [ClassicSimilarity], result of:
          0.023670541 = score(doc=3183,freq=26.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.31146988 = fieldWeight in 3183, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
        0.048568267 = weight(_text_:subject in 3183) [ClassicSimilarity], result of:
          0.048568267 = score(doc=3183,freq=4.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27942157 = fieldWeight in 3183, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
      0.4 = coord(2/5)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.
    Content
    Contents: 1. Introduction: Kinds of Division; 2. The Basics of Logical Division; 3. History; 4. Formalization; 5. The Rules; 6. The Status of the Rules; 7. The Process of Logical Division; 8. Conclusion
    Source
    ISKO Encyclopedia of Knowledge Organization, ed. by B. Hjoerland. [http://www.isko.org/cyclo/logical_division]
  20. Thomas, A.R.: Bliss Bibliographic Classification 2nd Edition : principles features and applications (1992) 0.03
    0.028237393 = product of:
      0.070593484 = sum of:
        0.02251335 = weight(_text_:of in 541) [ClassicSimilarity], result of:
          0.02251335 = score(doc=541,freq=12.0), product of:
            0.07599624 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04859849 = queryNorm
            0.29624295 = fieldWeight in 541, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=541)
        0.04808013 = weight(_text_:subject in 541) [ClassicSimilarity], result of:
          0.04808013 = score(doc=541,freq=2.0), product of:
            0.17381717 = queryWeight, product of:
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.04859849 = queryNorm
            0.27661324 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.576596 = idf(docFreq=3361, maxDocs=44218)
              0.0546875 = fieldNorm(doc=541)
      0.4 = coord(2/5)
    
    Abstract
    Publication of the 2nd ed. of the Bliss Bibliographic Classification presents librarians with a fresh opportunity to reassess the nature and benefits of helpful order for their collections and records. Half the parts are now available, exhibiting major expansion, revision, and development of the scheme. The new edition is sponsored by the Bliss Classification Association which welcomes the views and inputs of American librarians. It has been applied to libraries and information centers and used in thesaurus construction. This edition provides intensive subject specifity through detailed term listings and full synthetic capability. The notation is designed to be as brief as possible for the detail attainable. The classification allows a large measure of flexibility in arrangement and syntax

Languages

  • e 102
  • chi 1
  • d 1
  • More… Less…

Types

  • a 85
  • m 11
  • el 10
  • s 4
  • b 2
  • More… Less…