Search (6 results, page 1 of 1)

  • × language_ss:"e"
  • × author_ss:"Gödert, W."
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.06
    0.056223832 = product of:
      0.112447664 = sum of:
        0.09235258 = weight(_text_:web in 987) [ClassicSimilarity], result of:
          0.09235258 = score(doc=987,freq=14.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.57238775 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.02009509 = product of:
          0.04019018 = sum of:
            0.04019018 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.04019018 = score(doc=987,freq=2.0), product of:
                0.17312855 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049439456 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
    LCSH
    Semantic Web
    World Wide Web / Subject access
    RSWK
    Semantic Web
    Subject
    Semantic Web
    World Wide Web / Subject access
    Semantic Web
  2. Gödert, W.; Horny, S.: ¬The design of subject access elements in Online Public Access Catalogs (1990) 0.01
    0.013997929 = product of:
      0.055991717 = sum of:
        0.055991717 = weight(_text_:search in 5830) [ClassicSimilarity], result of:
          0.055991717 = score(doc=5830,freq=4.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.3258447 = fieldWeight in 5830, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=5830)
      0.25 = coord(1/4)
    
    Abstract
    Experiences with retrieval in OPACs suggest that there are major problems for the users of such systems, such as choosing the 'correct' subject access vocabulary, narrowing or broadening the set of items retrieved regarding the search interest. Such problems relate to two facts: (1) that in the early OPACs subject access has not been considered seriously enough and (2) that the complexity of the topic has not been really recognized. Using a typology of users' questions it is demonstrated which requirements musts be met by a successful online subject access. Improvements of subject access tools are primarily aimed at, pinpointing the interplay between the different subcomponents of any subject facility: a) the features of the indexing languages used; b) the indexing principles used; c) the design and structuring of the database; and d) the possibilities of the technical retrieval facility, the search mode, and query languages. The contribution summarizes the manifold interactions between the four subcomponents listed. Any successful retrieval will heavily depend on the design of these components considering their interactions.
  3. Gödert, W.: ¬The design of subject access elements in online catalogues : Some problems (1991) 0.01
    0.0131973745 = product of:
      0.052789498 = sum of:
        0.052789498 = weight(_text_:search in 5140) [ClassicSimilarity], result of:
          0.052789498 = score(doc=5140,freq=2.0), product of:
            0.17183559 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.049439456 = queryNorm
            0.30720934 = fieldWeight in 5140, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0625 = fieldNorm(doc=5140)
      0.25 = coord(1/4)
    
    Abstract
    The research, investigating experiences of users with subject searching of on-line public access catalogues (OPACs), stresses that there is an interaction between: features of the indexing languages used; indexing principles used; design and structure of the data base; and the possiblities of the technical retrieval faculty, search mode and query language used
  4. Gödert, W.: Facet classification in online retrieval (1991) 0.01
    0.010284277 = product of:
      0.041137107 = sum of:
        0.041137107 = weight(_text_:web in 5825) [ClassicSimilarity], result of:
          0.041137107 = score(doc=5825,freq=4.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25496176 = fieldWeight in 5825, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5825)
      0.25 = coord(1/4)
    
    Abstract
    "Online retrieval" conjures up a very different mental image now than in 1991, the year this article was written, and the year Tim Berners-Lee first revealed the new hypertext system he called the World Wide Web. Gödert shows that truncation and Boolean logic, combined with notation from a faceted classification system, will be a powerful way of searching for information. It undoubtedly is, but no system built now would require a user searching for material on "nervous systems of bone fish" to enter "Fdd$ and Leaa$". This is worth reading for someone interested in seeing how searching and facets can go together, but the web has made this article quite out of date.
  5. Gödert, W.: Facets and typed relations as tools for reasoning processes in information retrieval (2014) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 1565) [ClassicSimilarity], result of:
          0.04072366 = score(doc=1565,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 1565, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1565)
      0.25 = coord(1/4)
    
    Abstract
    Faceted arrangement of entities and typed relations for representing different associations between the entities are established tools in knowledge representation. In this paper, a proposal is being discussed combining both tools to draw inferences along relational paths. This approach may yield new benefit for information retrieval processes, especially when modeled for heterogeneous environments in the Semantic Web. Faceted arrangement can be used as a selection tool for the semantic knowledge modeled within the knowledge representation. Typed relations between the entities of different facets can be used as restrictions for selecting them across the facets.
  6. Gödert, W.: Facets and typed relations as tools for reasoning processes in information retrieval (2014) 0.01
    0.010180915 = product of:
      0.04072366 = sum of:
        0.04072366 = weight(_text_:web in 3816) [ClassicSimilarity], result of:
          0.04072366 = score(doc=3816,freq=2.0), product of:
            0.16134618 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.049439456 = queryNorm
            0.25239927 = fieldWeight in 3816, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3816)
      0.25 = coord(1/4)
    
    Abstract
    Faceted arrangement of entities and typed relations for representing different associations between the entities are established tools in knowledge representation. In this paper, a proposal is being discussed combining both tools to draw inferences along relational paths. This approach may yield new benefit for information retrieval processes, especially when modeled for heterogeneous environments in the Semantic Web. Faceted arrangement can be used as a selection tool for the semantic knowledge modeled within the knowledge representation. Typed relations between the entities of different facets can be used as restrictions for selecting them across the facets.